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ABSTRACT 
We propose an analytic description of the direct mergings that involve galaxies in groups. We predict shape 

and evolution of the distribution of the galaxian masses in these finite systems, including the formation of a 
cD-like merger that analytically appears as a critical phenomenon. Our findings constitute a close counterpart 
of many AT-body results. Similar aggregation phenomena conceivably take place in other cosmic structures. 
Subject headings: cosmology — galaxies: clustering 

1. THE PROBLEM 
Many direct iV-body experiments (Carnevali, Cavaliere, & 

Santangelo 1981; Ishizawa et al. 1983; Barnes 1989) show the 
occurrence of intense merging activity in simulated groups of 
galaxies. 

In fact, these authors found that in such systems, slow hyper- 
bolic encounters of galaxies may be so effectively inelastic due 
to energy transfer from orbital to internal degrees of freedom, 
as to cause prompt and multiple galaxy mergings, which drive 
drastic evolution of the whole system in some dynamical times. 

Often these simulations end up in the formation of a large 
central object with a brightness profile similar to a cD galaxy, 
surrounded by a few, small orbiting galaxies in a shrunken 
configuration (Carnevali et al. 1981; Cavaliere et al. 1983; 
Barnes 1989). The authors stress the similarity of their results 
to observed groups dominated by a cD-like galaxy (Albert, 
White, & Morgan 1977; Tonry 1987). 

In this Letter, we propose an analytical structure that cap- 
tures an essential aspect of these phenomena and indicates 
interesting extensions. 

2. THE FRAMEWORK 
Effective descriptions and predictions of the evolving dis- 

tribution N(M, t) of galaxy masses call for a time-resolved 
kinetic equation expressing dN/dt. The right-hand side of such 
an equation (Cavaliere & Colafrancesco 1990; Cavaliere, Col- 
afrancesco, & Scaramella 1991) will have a linear form ccN 
when evolution is driven mainly by direct collapses of primor- 
dial density perturbations in a hierarchical sequence (see 
Peebles 1980). It will have instead a nonlinear structure when 
the main role is played by interactions of collapsed units aggre- 
gating into higher hierarchical levels. Estimates starting from 
collapse theories (see White & Rees 1978) indicate that galaxies 
in groups are likely to interact with companion members over 
a few to several crossing times. 

In the following we focus on such interactions and take up 
the formalism of the classic aggregation equation 
(Smoluchowski 1916). Its possible cosmogonic relevance has 
been pointed out repeatedly (see Silk & White 1978; Lucchin 
1988), while its rich analytic content has been unveiled only 
recently (see Ernst 1986). We write 
dN 1 fM 
— = - dM'K(M', M - M', t)N(M', t)N(M - M', t) 
ot 2 Jo 

ÍMmax 
dM'K(M, M', t)N(M', t) , (2.1) 

for the distribution function N(M, t) normalized to the system 
mass JÏ, taken in “comoving” form on dividing by pa, the 
ambient mass density in the group. In the intrinsically finite 
systems we will consider, the lower integration limits actually 
mean the smallest mass in the system Mmin Ji (in general, 
the equation may be formulated in an alternative form free of 
any apparent infinity). The upper limit is the largest mass 
Mmax < Ji. 

The interaction kernel K — /?a<EF> includes the velocity- 
averaged gravitational cross section for encounters of two gal- 
axies with masses M and M' and relative velocity V. This reads 
£ « 7c(r + r')2t;2/F2 for focused, resonant interactions (FI); see 
Saslaw (1985). The symmetrized form v1 = 2G(M -l- M')/ 
(r + r') applies in the interesting range of mass ratios ~ 101, 
and the condition Vjv < a ~ a few is most effective for merg- 
ings. As for the galactic radii, we mainly consider the simple 
scaling r oc (M//?)1/3 to apply during the process, p being the 
internal density; an alternative scaling is discussed in § 6. 

So <2F> is a homogeneous function of M, M', with degree 
2 = 4/3 for FI. In terms of a characteristic mass MJtf) and of 
the normalized mass m = M/M*, its scaling reads <£F> oc 
M*/3F_ V_1/V(m, m'),with m') oc (m1/3 + m'1/3Xm + m'). 

We show that for such À > 1, equation (2.1) implies the 
occurrence of a critical phenomenon. 

3. RUNAWAY IN GROUPS OF GALAXIES 
First we argue heuristically, on the basis of the merging rate 

T-1 -nWycc-^M'J3 , (3.1) 

holding when the mass J? in the set of normal galaxies is 
conserved, and their number density scales as n oc PJM*. A 
rate t ^i) accelerating with time will point to the onset of a 
runaway process. 

Because M*(t) will grow by mergings, a sufficient condition 
for FI to drive t_1 to run away requires the time-depending 
coefficient ^{t) ocpll3{pJp)ll3V~1 not to decrease rapidly; if 
so, a positive feedback loop for M*(t) may set in. In the open 
intergalactic “ field,” such a condition will be easily impaired 
by rarefaction of the ambient in cosmic time (pa oc td, with 
d = — 2 to — 3 when Q0 = 1 to 0), and by the heating up of the 
linear velocity field (F act113; see Vittorio & Turner 1987). 
Within a group, instead,/>a is expected to rise during the viriali- 
zation phase and to grow slowly thereafter, while the velocity 
dispersion F only undergoes a modest increase. Then M*(t) 
may start a runaway growth over some crossing times td ~ 
R/V of the group, since x/td ~ \/nLR < 101 holds. 
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In galaxy groups the velocity field is close to resonant condi- 
tions. With a mass ratio of group to galaxy Jt/M ~ 101, esti- 
mates borrowed from collapse theories yield dispersion ratios 
V/v ~ (JÍ/M)1112 ~ 1 in systems formed from initial fluctua- 
tions with a white-noise power spectrum, as often used in simu- 
lations. Other power spectra still give 
V/v ~ (Jt/M){1 -n)/12 ~a few for n> —2. In general, the weak 
dependence V/v ~ (Jt/M)ll3{pjp)116 holds. The actual value 
of V/v easily falls under the previous estimates, as the galaxies 
specifically gained contrast from dissipative formation; in 
addition, the internal degrees of freedom are heated up by the 
interactions themselves. 

Our main case FI may be compared with other kinds of 
interactions having À < 1, e.g., the geometrical limit (GI) 
having cross section E æ rjn(r + r')2 oc (m1/3 + m'1/3), with 
/I = f and efficiency t] <v2/V2 <£ 1. Here the merging rate 
reads t_1 oc rjpa F/p2/3M*/3, so that not only the initial growth 
is slower, but also any attempt to accelerate the rate t_1 oc 
^*1/3 by the i-dependent coefficient is counteracted by the 
very growth of 

4. ANALYSIS OF THE RUNAWAY: THE MASS DISTRIBUTION 
Beyond the heuristics, the structure of equation (2.1) con- 

tains a novel phenomenon. We derive analytic solutions of 
equation (2.1) that scale—after an initial transient—as N(M, t) 

M~x(t)(l)(mX equivalent in normalized form to 
(JÍ/M^f-2When x = 2 holds and 0 has an upper 
cutoff, this form plainly conserves the system mass Ji at all 
times. 

In general, each side of equation (2.1) separates into a t- 
dependent and an m-dependent factor. The time-dependent 
factors must balance leading to the equation 

which constitutes the exact counterpart of the estimate in 
equation (3.1). In turn, the factors depending on m must satisfy 
the other equation : 

d</>(m) fmmax 

m —— + x(¡)(m) = (j)(m) m')(p(m') dm Jo 
1 — - dm'i¡/(m\ m — m')</>(m')</>(m — m') , (4.2) 
2 Jo 

that governs the shape <£(m) of the mass distribution under 
mergings. 

For m > 1 a detailed analysis (see Ernst 1986) of the right- 
hand side of equation (4.2) yields 

(¡)(m)^mÀem (4.3) 
for a generic homogeneity degree A. For m 1, it is seen that 
when A > 1 holds, and specifically for FI, the solution is finite 
and of the form 

#n)->m-x , (4.4) 
with x related to À as we show next. The asymptotic shapes of 
the mass distribution play an important role in the evolution of 
the system, which is best understood considering the mass flux 
(see van Dongen & Ernst 1985) across mmax 

/ ^\2x~4‘ fmmax 

J mmax 
x dm"m'il/(m',m")<p(m',t)4>(m",t). (4.5) 

Jfftmax ~ m 

When Mmax falls in the range of m where already the form 
(4.3) applies, the exponential cutoff plainly yields ^ = 0, 
implying conservation of total mass. But an interesting situ- 
ation arises when Mmax falls in the range where still m = 
M/M* 1 holds, and hence formula (4.4) instead applies. This 
requires the characteristic mass to run away, i.e., technically 
M* -��oo at a finite time i^, as proved in § 5 for >1 > 1. Given 
this, the result is ^ oc — m3+A_2xM3+A_2x. The condition for 
^ to be #0 and finite is 

x = (A + 3)/2 > 2 , (4.6) 
namely, x = 13/6 for our case FI with À = 4/3. We require a 
finite JÍ for consistency with a time-resolved description, 
stable relative to different values of the system mass. 

The meaning of ^ < 0 is as follows. On approaching the 
divergence at the mass distribution is rapidly stretched out 
into a power-law tail by the increasing M*(i). This triggers a 
finite mass flux Jt <0 from the set of normal galaxies 
described by equation (2.1). By global mass conservation, the 
mass leaving this set must flow into a second phase. Corre- 
spondingly, the system mass breaks up into a bimodal distribu- 
tion with an increasing separation; see Figure 1. The first phase 
is constituted by the normal galaxies with a steep distribution 
(¡) oc m-(A+3)/2. The second phase is constituted by the forming 
merger, with zero number density but a finite mass, actually 
growing at the rate \Jt\. 

5. THE CHARACTERISTIC MASS 
We now examine equation (4.1) with the value of x given by 

equation (4.6), to find the conditions for an actual divergence of 
M*(r). 

log M 
Fig. 1.—The shapes of the mass distribution of normal galaxies for FI 

(X = 4/3) in the premerger (t = \.5t0, thin curve) and in the postmerger (r = 
6i0, thick curve) stage, as resulting from numerical integrations of eq. (2.1) from 
the initial condition shown at extreme left. The slope of the postmerger dis- 
tribution is x » 2.15, to be compared with the value 13/6 evaluated in § 4. It is 
also represented by the merger with mass Jt{0) — J({t). The inset reproduces a 
typical postmerger configuration from the N-body simulations of Carnevali et 
al. (1981). Units: 10" M0 and 1 Mpc. 
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The function ^(t) on the right-hand side is determined up to 
a separation constant set with the use of the zeroth and second 
moments of N(M) (Ernst 1986) and contains all the time depen- 
dences in the kernel. We parameterize its i-dependence as 
^(t) = F0(t/t0)f, with the following breakup: the ambient 
density increases sharply at recollapse, and during virialization 
and thereafter may be described by pa(t) oc t4 with d ~ f. The 
internal density is poorly known, and we let s ~ 0-d in the 
parameterization p ccf. Finally, V(t) increases weakly, as said, 
and we set V(t) oc tu with m < j. In our case FI, /= d — s/3 
— u ~ �3—0 holds. 

Then equation (4.1) is solved by (see Fig. 2) 

W' 

2/(1-A) 

where k ~ *0)il + À),2(A — l)/2(/ + 1) includes the 
separation constant. 

It is seen that when 2 > 1 (as applies for FI) and for/ > — 1 
(requiring no or slow expansion), indeed M*(i) formally 
diverges at a finite time, which proves the runaway. In fact, for 
FI this takes only some dynamical times because the outer 
exponent in equation (5.1) takes on the value 2/(1 — 2) = —6, 
and = £0[(1 + k)/k]1/(/+1) < 5t0 holds; the initial time t0 
stands for the epoch t ~ td when a typical density perturbation 
turns around to collapse and form the group. 

So the argument closes up for 2 > 1, and specifically for 
2 = 4/3. By way of contrast, for 2 < 1 (as is the case for GI) the 
solution MJt) increases monotonically yet remains finite at 
any t (see Fig. 2), because the outer exponent becomes 
1/(1 — 2) > 0. Then we cannot expect Jt ^0 ; instead, the mass 
distribution evolves self-similarly and slowly, direct mergings 

Fig. 2.—The characteristic mass M*(t) is compared for interactions of the 
FI kind (À = 4/3) and of the GI kind (2 = |). We represent by the continuous 
curve the FI. The dashed curve refers to the maximal GI, computed with r¡ = 1, 
and with pa oc i2/3 which actually describes the overall contraction associated 
with a true runaway regime. Even so, an increase of by a factor of 10 takes 
times longer by a factor ~ 10. 

being ineffective to produce a large merger over dynamical 
time scales. 

Figure 1 also presents preliminary results from numerical 
solutions of equation (2.1) for 2 = 4/3 in the premerger and 
postmerger stage, that bear out our analysis remarkably. 

6. CONCLUSIONS AND DISCUSSION 
In self-gravitating galaxy groups the shape and the evolution 

of the galaxy distribution AT(M, t) are driven by interactions to 
become independent of initial conditions on a scale provided by 
a multiple of the dynamical time set at system collapse. 

Focused resonant interactions drive the runaway formation 
of a large merger that eventually gobbles most mass in the 
system. The critical phenomenon is the onset of mass loss from 
the set of normal galaxies described by equation (2.1). The 
system breaks up into two phases: (1) the set of normal galaxies 
with a steep mass distribution dominated in number and mass 
by small, least interacting objects; and (2) a merger at the 
upper mass end, gaining mass from the former. This merging 
process is a form of gravitational runaway, with time scale 
given by equation (3.1), equivalent to t ~ V/rGpa ~ 
(P/Pa)m(GPaV112- 

With 2 > 1, runaway pace given by A 2 cctf, and 
slope of the residual distribution (f) ~ m~x are related by 
x = (3 + 2)/2 > 2 in terms of the cross section scaling ocMA, 
by the key requirement of a transition time-resolved and inde- 
pendent of the finite system mass. The interesting range is 
4/3 < À < 3/2. We have discussed the case 2 = 4/3. The other 
end is 2 = 3/2, resulting from the scaling r oc M1/2 as given by 
the observational Faber-Jackson relation L oc p4 (Faber 1982) 
at M/L ~ const. Because this also satisfies the key condition 
2 > 1 it yields very similar outcomes, actually with a shorter 
loo- 

Our results for FI in a finite system are formally analogous, 
yet not identical, to the phase transition sol to gel (“ gelation ”) 
occurring in infinite suspensions of aggregating particles (see 
Ernst 1986). The fully developed merging runaway constitutes 
the first neat instance of a phase transition of gravitational 
nature in the relatively nearby universe. The appropriate order 
parameter is constituted by the normalized merger mass 
1 - Jt(t)/Jt(0). 

The runaway is eventually stabilized as resonant interactions 
are quenched by the decrease in number and size of the sur- 
viving galaxies. These are small also because the grazing inter- 
actions peel off the least bound external regions. The residual 
interactions are best described as dynamical friction, with 
asymmetrical cross sections (see Alladin, Narasimham, & 
Ballabh 1988), of satellites with large angular momenta. 

Two extreme regimes may be envisaged: for V/v ~ 1 reson- 
ant interactions dominate and the runaway proceeds; when 
V2/v2 P 1 initially, the evolution is self-similar and slow, liable 
to an early termination by inclusion of the system in a still 
larger cluster. 

Initial presence of much diffuse dark matter (as opposed to 
individual galaxian halos) will stretch out the merging times, as 
then V2 is enhanced at given luminous mass. Large member- 
ship also concurs, by interference of interlopers with the two- 
body collisions (Mamón 1990). In rich clusters the velocity 
dispersion is large enough to suppress the direct mergings, 
making it difficult to build up a cD body inside rich clusters 
(Carnevali et al. 1981; Merrit 1983; Richstone & Malumuth 
1983; Bothun & Schombert 1988). In such environments, a 
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slower form of merging may prevail (see Richstone 1990): first, 
dynamical friction segregates the galaxies to the center, then 
merging or cannibalism take place. 

Our analytic findings closely match the average results from 
iV-body experiments recalled in § 1 as for quantitative time 
scales and for morphologies, as visualized by Figure 2. The 
experiments can start from such special phase-space structures 
as large angular momenta which slow down mergings 
(Governato, Bhatia, & Chincarini 1991); in our analysis, these 
will be embodied in a reduced form, through an efficiency 
rj < 1. 

The reality of runaways gone to near completion is sup- 
ported by such groups dominated by a cD-like galaxy (e.g., 
MKW 11, AWM 4, AWM 7) as cataloged by Morgan, Kayser, 
& White 1975; Albert et al. 1977). Indirect evidence is provided 
by X-ray emission from groups (cf. Schwartz, Schwartz, & 
Tucker 1980; Biermann et al. 1982), since extensive mergings 
induce shrinking of the overall configuration so increasing the 
density of the intergalactic gas, which boosts and sustains the 
bremsstrahlung emissivity ccn2 over several dynamical times. 

Our solutions of equation (2.1) differ sharply from the fully 
self-similar solutions (see Silk & White 1978) forced to evolve 
on a cosmic time scale by imposing the condition t oc i. In a 
critical universe, the latter kind would be induced in the 
“field” by the fast expansion paoct~2, such that the scale 

t ~ l/(Gpa)1/2 -> t. In an open universe the even faster expan- 
sion eventually freezes the evolution since t/í oo. We will 
discuss elsewhere in full the relationships between these 
branches of the hierarchical clustering. 

Here we only note that variants of the merging runaway are 
likely to operate also in environments other than spherical, 
long-lived groups. First, redshift surveys (e.g., Ramella, Geller, 
& Huchra 1989; Sutherland 1988), large-scale simulations 
(Efstathiou et al. 1988; Villumsen 1989), and quasi-linear 
analyses (see Shandarin & Zel’dovich 1989), all stress struc- 
tures with dimensionality D < 3 and correspondingly reduced 
expansion rates that allow some merging activity. Second, in 
many groups with short survival time and/or large V2/v2

9 the 
runaway will begin only to be prematurely terminated at the 
stage of building large ellipticals possibly with stimulated star- 
bursts. 

Such milder and more common variants of the merging 
action will be relevant to the deep galaxy counts (Tyson 1988; 
Co wie et al. 1990; Koo 1990; Guiderdoni & Rocca- 
Volmerange 1990) for assessing the role of number evolution. 

We are indebted for helpful discussions to L. Biferale, F. 
Lucchin, S. Matarrese, N. Vittorio, and especially to M. Vietri, 
and thank the referee for constructive comments. 
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