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ABSTRACT 
We discuss the evolution of gravitational systems under merging interactions between their components. 

Specifically, we consider galaxies in groups or in the field, and subclusters in forming clusters. The mass dis- 
tribution evolving under aggregations is described with a kinetic equation, for which numerical and analytical 
solutions are presented and compared. The results agree quantitatively and show, after a short transient, two 
regimes: self-similar evolution; or a fast, critical phenomenon occurring over a few crossing times in finite 
systems with relatively low velocity dispersions. The latter bears the marks of a gravitational phase transition. 
We compare these findings with observations of groups and clusters of galaxies, and conclude that such gravi- 
tational phase transitions are indeed effective or even dominant in two typical environments: in groups, 
leading to the formation of a giant elliptical or a cD-like galaxy, and in forming clusters, causing fast erasure 
of substructures. In the “open” field we find that aggregations play only a complementary role relative to 
direct collapses from initial density perturbations. An intermediate situation may prevail in large-scale struc- 
tures with weak contrast and slow expansion, like the sheets and filaments which actually modulate the field. 
Subject headings: galaxies: clustering — galaxies: interactions 

1. THE PROBLEM 
The formation of such cosmic structures as groups and clus- 

ters of galaxies has been discussed mainly in terms of direct 
collapses from initially small overdensities that are weakly 
gravitationally unstable even in a critical FRW universe. Such 
perturbations are often taken to constitute a random-phase 
Gaussian field, with power spectrum <|c>fc|2> oc/cvi4/3, where 
v < — 1 at cluster and smaller scales (see Peebles 1980). On 
crossing the threshold of nonlinearity the perturbations col- 
lapse and virialize in a few dynamical times. For a homoge- 
neous sphere formed from an overdensity of rms amplitude in a 
critical universe, this implies Ö & g ce M~at2/3 ~ 1 with 

= (v + 3)/6, and leads to a characteristic virialized mass 
Mc oc (1 + z)~lla. 

In the direct hierarchical clustering (DHC) scenario every 
step of the hierarchy is directly related to the distribution of the 
initial overdensities, and the internal densities of the conden- 
sations at virialization scale in step with the external back- 
ground oc (1 + z)3. The nonlinear stages of the collapses 
have been followed in detail with iV-body simulations, which 
for the high-contrast condensations yield time-dependent dis- 
tributions of mass (MDs) within a limited dynamic range (see, 
e.g., Efstathiou et al. 1988; Carlberg & Couchman 1989). 

Analytic forms of the MDs have been derived in a quasi- 
static approximation, either by assuming at each given epoch 
collapse to take place in all overdense volumes (Press & 
Schechter 1974); or by assuming collapses to begin only at high 
peaks of the overdensity field, and estimating a statistically 
relevant measure of the infallen mass (Doroshkevich 1970; 
Bardeen et al. 1986; Colafrancesco, Lucchin, & Matarrese 
1989). Alternatively, Cavaliere, Colafrancesco, & Scaramella 
(1991, hereafter CCS 1991) propose a rate equation of purely 
differential structure resolved over times of the order of the 
dynamical time td and with a right-hand side linear in the MD, 
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to account for primary collapses at high peaks followed by 
secondary infall of halos. 

All such computations assume substructure to be erased on 
time scales close to the minimum resolution. The effective 
resolution is of several td in the quasi-static approach, which 
generally causes problems with overcounting substructures 
(see discussion by Bond et al. 1991). The resolution is still of 
order td in the approach of CCS (1991). But erasure develops 
over a variety of scales ; generally it takes a few crossing times 
of the forming structure as a whole, but it may take much 
longer times for galaxies in large groups or in clusters. 

To describe such phenomena in full we must resolve time 
scales <;id. In fact, we see both in the sky and in iV-body 
simulations interactions in the making among substructures, 
that involve transfers of energy to internal degrees of freedom. 
These play an important role during the formation and the 
subsequent evolution of groups and clusters, not only for per- 
manence of substructure, but also because their back-reactions 
affect the duration of the overall collapse as discussed by Cava- 
liere & Colafrancesco (1990, hereafter CC 1990). 

Aggregations of subclusters in cluster simulations have been 
discussed in the papers by Cavaliere et al. (1986); Efstathiou et 
al. (1988); West, Oemler, & Dekel (1988); and CC 1990. Obser- 
vational evidence of substructures present, or on their way to 
merge, stems mainly from X-ray observations (see Jones & 
Forman 1984; Forman & Jones 1990; CC 1990; Briel et al. 
1991). Additional evidence comes from optical counts associ- 
ated with spectroscopic analyses (see Geller & Beers 1982; 
Binggeli, Tammann, & Sandage 1987; Dressier & Shectman 
1988). 

The aggregations of galaxies have bpen widely investigated, 
in two limits. The first considers direct merging which follows 
encounters between comparable galaxies, with stickiness 
increasing with decreasing relative speeds (Toomre 1977; see 
also Saslaw 1985; Binney & Tremaine 1987). References rele- 
vant to such interactions of galaxies in groups include Roos & 
Norman (1979), Carnevali, Cavaliere, & Santangelo (1981, 
hereafter CCS 1981), Ishizawa et al. (1983), Merrit (1983), Rich- 
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S stone & Malumuth (1983), Barnes (1989), Mamón (1990), and 
^ Quinn, Salomon, & Zurek (1991). The second limit envisages 
^ interactions between unequal galaxies with high relative veloc- 
^ ities typical of rich environments; such encounters are best 
S described in terms of dynamical friction (see Alladin, Narasim- 
2 ham, & Ballabh 1988; Richstone 1990). 

In the following we will investigate the effect on the MD of 
interactions leading to aggregations between high-contrast 
units, both inside bound systems, and out in the “ open ” field. 

The plan of the paper is as follows. In § 2 we set up our 
analytical tool to describe gravitational “collisions,” in the 
form of an aggregation kinetic equation with a nonlinear 
integro-dijferential structure. In § 3 we define and discuss spe- 
cific models for interactions in the field and in bound systems, 
and give a heuristic preview of the behaviors to be expected for 
the solutions. Our numerical solutions of the kinetic equation, 
that substantially improve and extend previous work by 
Nakano (1966), are presented in § 4. In §§ 5 and 6 we derive 
analytic asymptotic solutions of the kinetic equation. Com- 
parison of the numerical with the analytical results is made in 
§ 7. In § 8 we summarize and interpret our findings and our 
technique, and discuss interesting extensions. 

2. THE FRAMEWORK 
To attack the complexity of merging phenomena we adopt 

the following framework: units of individual mass M, size r, 
internal density p, compose a system with total mass 
overall size R, and average density pa < p. The system evolves 
mainly through random binary interactions. 

Our formalism to treat the ensuing evolution of the MD will 
start from the classic aggregation equation of von Smolu- 
chowski (1916). Possible cosmogonic applications have been 
pointed out by among others Silk & White (1978) and Lucchin 
(1988). However, the rich mathematical content of this integro- 
differential equation has been discovered and discussed only 
recently; see Ernst (1986) for a review oriented toward the 
physical chemistry of suspensions and Cavaliere, Colafran- 
cesco, & Mend (1991) for phenomena relevant to cosmogony. 

We start with the continuous form 

dN 1 fM 

— = - J dM'KiM', M - M', t) N(M\ t) N(M - M\ t) 

— N(M, t) ^dM'KiM, M’, t) N(M', t), (2.1) 

where AT(M, t) is the MD in “ comoving ” form, that is, divided 
by the ambient mass density pa and normalized to system 
mass Jf. The lower integration limits actually mean masses 

c/#; if necessary, the equation may be formulated in an 
alternative form free of canceling infinities. In the intrinsically 
finite systems we shall consider, the upper infinite limit is to be 
replaced by Mu < JÍ. 

The formal structure of the right-hand side includes a con- 
struction and a destruction term, such as to yield for the 
moments of the MD 

<MP> = J dMN(M, i)Mp (2.2) 

the relationships 
<M°> < 0 , <M> = 0 , <M2> > 0 , (2.3) 

when the MD has an upper cutoff.3 That the second relation- 
ship <M> = 0 does not always hold will be one major issue of 
this paper. Correspondingly, the total mass Jt = <M> in the 
system described by equation (2.1) is not conserved. 

The physics of the interactions is contained in the kernel 
K = pa£F, where V is the relative velocity and E is the gravi- 
tational cross section. Their product, averaged over the dis- 
tribution of relative velocities, is amenable to simple 
expressions (see Saslaw 1985) in three different regimes depend- 
ing on the ratio v2/V2, where v is the parabolic velocity of 
escape at the closest approach p. We shall often approximate v 
with the internal velocity dispersion of the component bodies, 
that has the same scaling and slightly larger values. 

The first regime applies to the case of high-velocity encoun- 
ters with V v, when technically E can be calculated in the 
impulsive approximation (neglecting the change in the poten- 
tial energy during the encounter, that is, along straight orbits). 
Then the effective cross section scales as the square of the 
objects radii, multiplied by a small efficiency for energy trans- 
fers rj < v2/V2 1. Small efficiency implies long time scales for 
merging, during which other evolutionary phenomena are 
likely to take over. Such encounters are unlikely to dominate 
the evolution of cosmic structures that we consider here, and 
so we shall not pursue them in detail. 

A second regime applies when v2 ~ F2and p ~ r hold. In 
these conditions, the cross section for merging of two members 
of masses M and M' not widely different reads E « 
n(r + r')2(l + 2G[M + M']/[r + r']F2). In the numerical com- 
putations to follow we shall consider the full expression for 
the cross section, but useful approximations obtain from con- 
sidering the two addenda separately, which constitute partial 
cross sections scaling like MA with a different homogeneity 
degree A. 

The first component describes purely geometrical collisions 
(GCs) where E = 7c(r + r')2. The second describes the focused, 
resonant interactions (FIs) with cross section 
E « 2n(r + r')2G(M + M')/(r + r')F2, that prevail in the range 
V2/v2 < a few, and are most effective for merging. 

The member radii scale as r oc (M/p)1/3 in terms of the inter- 
nal density p. Alternatively, for galaxies the Faber-Jackson 
relationship Lccv4 (Faber 1982) holds at least before they are 
involved in fast merging activity, and this constraint implies 
the scaling r oc M1/2 to hold at M/L ~ const, independently of 
p (M. Vietri, 1991 private communication). During the pheno- 
mena we are to investigate these two extremes bracket the 
galaxy scalings. For the sake of simplicity, our exposition will 
be mainly in terms of the former scaling, and will be com- 
plemented as necessary with the (small) changes in the results 
ensuing from the latter. 

The scalings of EF with mass and time will constitute the 
key features in equation (2.1). Considering first the char- 
acteristic mass M*(t) = <M2>/<M> and the normalized 
mass m = M/M*, the following scalings obtain: EF oc 
M2/3Fp_2/3t/f(mJ_m') with ^ oc (m1/3 + m,1/3)2 for the GC 
component; or EF oc M^/3 F_1p_1/3^(m, m') with i^(m, m') oc 
(m1/3 + m'1/3)(m + m') for the FI component. To wit, either for 

3 This is a necessary condition for the time derivative of the moments to be 
written in the symmetrized form 

dMdM'K(M, M’, t) N(M, t) N(M\ t) 

x [(M + M')p -Mp- M'p] . 
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; GCs or for FIs the cross section EF is a symmetric homoge- 
^ neous function of M and M\ with degree 1 = 2/3 or 2 = 4/3, 
^ respectively; the latter becomes À = 3/2 when the Faber- 
S Jackson relationship applies. The scalings with t are given in 
2 the next section. 

3. TIME SCALES 
We shall see that the solutions of the integro-differential 

equation (2.1) begin with a transient stage that still remembers 
the initial conditions, but rapidly goes into a self-similar stage 
where such memory is lost. Remarkably, in cases where 2 > 1 
the memory loss may take the extreme form of a runaway 
phenomenon that remolds the whole distribution over a few to 
several crossing times td ~ 2R/V.   

The average merging time is given by t ~ l/nEF ~ 
tJjV'ir/R)2. As long as the mass in normal members is 
conserved in the system, their number density will scale like 
n oc PaM*1. Then the average merging rates effective in the 
kernel of equation (2.1) read 

T-1<x^Mi1/3°rT'1<x^^M*3> t3-1) 

for the GC component or for the FI component, respectively. 
In a first heuristic look at equation (2.1), a rate t-1(í) acceler- 
ating with time will point to a runaway process. 

When GCs prevail, the explicitly i-dependent coefficient in 
equation (3.1a) reads 

^00(1) = Pa3(PJP)2l3V ��(3'2) 
Equation (3.1a) implies that any attempt of GCs to accelerate 
the rate t_1 oc 1/3 wil1 be counteracted by the nega- 
tive feedback provided by the very growth of 

For FIs, on the other hand, the time-dependent coefficient of 
t - 1 in equation (3.1b) reads 

&At) = Gpli\palp)^V-' . (3.3) 

As MJ¿) grows by merging, the condition for t" 1 to run away 
is that does not decrease rapidly. Then a positive feed- 
back loop for M*(t) may set in, leading to divergence of the 
rate or equivalently to very short effective times, and conceiv- 
ably inducing peculiar behaviors of the solutions of equation 
(2.1). 

To proceed to a quantitative analysis of such behaviors, we 
parameterize pa{t)cctd, p(t)ccf, and V(t)cctu. Hence the 

behaviors of ^^(t) and may be described in terms of a 
common form ^ but with different expressions 
and values for the exponent / and for the dimensional factor 
#o. Specifically, for GCs the expression f = d — 2s/3 + u 
obtains from equation (3.2), while for FIs we have f=d — 
s/3 — u from equation (3.3). The quantities d, s, and u take on 
different values in the field and inside the structures like groups 
or clusters. 

In the field of a FRW universe the values d = — 2 or — 3 
apply for values of the density parameter Q0 = 1 or 0. As for 
the velocity field, the linear analysis of large-scale motions 
yields u « | (see Vittorio & Turner 1987). 

Within bound structures pa(t) is expected to rise sharply 
during the virialization stage, and to grow slowly thereafter. 
Meanwhile V(t) undergoes only a modest increase like i1/3 or 
stays nearly constant. We parameterize these behaviors with 
d & % and w « 

The internal density p(t) is poorly known, and, if anything, it 
tends to decrease after a merging. We consider two limiting 
cases : s « 0, that is, nearly constant internal density for the 
interacting units, which will provide a relevant bound within 
structures ; and s & d, that is, nearly constant contrast with the 
ambient, which will provide relevant bounds for the field. 

In summary, our pivotal rates both scale as 

T-1 oc t'M*-1 . (3.4) 

Physically relevant values off and X are as follows. 
For GCs we have 2 = f. In addition, in the field with three- 

dimensional critical expansion / « — 5/3 holds when constant 
internal density applies, and / « — i when constant contrast 
applies. Inside structures instead, with a velocity field V oc i1/3 

we have f & 5/9 for constant density, and / ä 1 for constant 
contrast. 

With FIs, X = 4/3 (or 3/2) applies. As to /, under the above 
conditions we have—7/3 to —5/3 in the field, and/« 
0-1/3 inside structures. 

For a constant velocity field the value of/ will decrease by 
one-third for GCs and increase by one-third for FIs. We collect 
in Table 1 pairs of X and / which are either of direct physical 
relevance, or useful for comparing behaviors in different 
ambients. 

We are now ready to compute numerically the full range of 
evolutions of the MD under GC and FI interactions, either in 
the field or inside bound systems. 

TABLE 1 

/ 
Cross        

Section X —7/3 —5/3 —1/3 0 1/3 5/9 1 
GC  Field Field Bound Bound 

2/3 paocr2 paocr2 Pfloci2/3 pacct213 

p ~ const P ^ Pa P cc Pa P ~ const 
FI   Field Field Bound Bound 
rxM'13 4/3 P'Otr2 paxr2 PaKt213 p'Kt213 

p ~ const p ^ Pa P ^ Pa P ~ const 
FI   Field Bound 
r oc JW1/2 3/2 A,ocr2 P„oct2'3 

p ~ const P ~ const 
Notes.—Pivotal models corresponding to the values of/ and A discussed in § 3. The asymptotic behavior of M*(i) grows 

steeper from left to right, and from top to bottom. Phase transitions will occur when M*(i) has a vertical asymptote at a finite 
time, i.e., for A > 1 and/> -1. A velocity field V oc i1/3 is implied. V = constant would yield/values decreased or increased 
by one-third for GCs or FIs, respectively. 
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S 4. NUMERICAL RESULTS 00 
We solve numerically the integro-differential equation (2.1) 

^ for the relevant parameters indicated in § 3 using time-iterative 
< integrations with a time step Ai = 10"3t, and a mass step 

AM < M0, where M0 is our mass unit. When required by 
^ numerical stability the step AM may go down to ~10-2Mo; 

this implies a rescaling of the physical time intervals corre- 
sponding to the computational time step. 

For galaxies in a group we use M0 = 1011 M0, and for 
subclusters in a cluster M0 = 5 x 1012 M0. The numerical 
values for the interaction kernels are set on the basis of equa- 
tions (3.1) using t0 = td as the physical unit of time. The initial 
number density of units that appears in the physical time scale 
will be n0 ~ 10 Mpc-3 galaxies in a group or n0 ~ a few 
Mpc-3 subclusters in a cluster. 

We consider, to begin with, initial conditions within a 
narrow mass range. Specifically, we shall mainly use a nar- 
row top hat N(M, if) = Ar0//(M0, 2M0) as an approxima- 
tion to a monodisperse distribution, and compare results 
with those from the Gaussian distribution N(M, Q = 
N0e-,MIM^l2/(2nyi2M0. We discuss in §8 different initial 
distributions. 

In general, for time intervals ~ t0 (decreasing for increasing 
values off) the figures to follow show transients that remember 
the initial conditions, both as for the shape and for the evolu- 
tion of the MDs. But then the MDs go into asymptotic regimes 
independent of initial details, with self-similar evolution. 

Figures 1-3 illustrate the evolution of the MDs for the GC 
case from the nearly monodisperse initial condition and for 
/= — 0, 1, to illustrate how the behavior changes for 
increasing values off The fully developed self-similar shape of 
the MDs at their low-mass end is a power law with logarithmic 
slope £ » 1.3, independent even of the values off 

With time increasing, the MDs extend toward large masses, 
while the small-mass end lowers, thus conserving the mass 
involved (we check that overall numerical uncertainties con- 

shown at the extreme left {dashed line). Our unit of mass M0 corresponds to 
1011 M0 for galaxies in a group, and to 5 x 1012 M0 for subclusters in a 
cluster. The solid lines refer to the MDs evaluated at the times {from left to 
right) tjt0 = 0.31, t2/t0 = 0.63, t3/t0 = 1.59, and tjt0 = 3.1 (we recall that our 
initial time t0 is taken equal to the dynamical time td). 

Fig. 2.—Same as Fig. 1 but with / = 0. Although this is not a physically 
relevant value, it is shown to illustrate the effect of/on the evolution. 

cerning the total mass remain within 10“2 during our 
integrations). Such evolution is strongly dependent on /. In 
particular for the valuef=-\ illustrated in Figure 1 the evo- 
lution is slowed down, but is still appreciable ; we have checked 
with similar computations that for values/ < — f the evolution 
comes to an effective standstill after a time <li0, and specifi- 
cally after a time 0.6io for/ = — 5/3. 

We illustrate in Figures 4, 5, and 6 the evolution under FIs 
with 2 = 4/3, starting from the nearly monodisperse condition 
at different times (see captions), again for increasing values of 
/= —5/3, 0, 1/3. While the first case shows a standstill after a 
very short transient, the other cases (see Fig. 7) show an inter- 
esting phenomenon, namely nonconservation of the total mass 
in the system, as directly computed from -# = J dMMN(M, t). 
This occurs near and after a finite time t^ which takes on 
values progressively shorter for increasing / namely, t^ = 5t0 
for/= 0 and t^ = 2t0 for/= |. Correspondingly but indepen- 
dently, the shape of the MD at i > becomes a pure power 
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Fig. 4.—The mass distribution under FIs with À = 4/3 and/= -5/3 and 
/= —5/3 is evaluated at íJíq = 0.2, t2/t0 = 2, t3 — t0 = 4, t4/i0 = 6. The last 
three curves overlap, indicating a standstill after a short transient. 

Fig. 6.—As above for/= 3. The times now are tjt0 = 0.31, t2/t0 = 0.67, 
:=: 1*24, t4/t0 = 2.17, ts/t0 = 3.1. 

law with slope constant at the value ä 2.15; the normalization 
lowers, which indeed implies a decrease of the total mass in the 
system described. Note that the average object mass also 
decreases, thus inverting the canonical trend of the MDs before 

As we shall see in the following, these features signal the 
occurrence of a phenomenon with the clear mark of a phase 
transition, corresponding to the formation of a merger. 

The evolution of N(M, t) for FIs with A = 3/2 is shown in 
Figure 8. The behavior is analogous to the previous case, only 
the evolution is faster at given /; for example, for/= 0 we now 
find « 3.3i0, to be compared with = 5t0 holding for 
A = 4/3. 

As discussed in § 2 the actual cross section is the sum of the 

Fig. 5.—The mass distribution under FIs with X = 4/3 and/ = 0 is evalu- 
ated at the times íJíq = 1.5, t2/t0 = 3, t3/t0 = 6, tjt0 = 9, t5/t0 = 15. The 
labels refer to the line at their left. The initial condition is shown at the extreme 
left (dashed line). The solid lines refer to the MDs before the transition, charac- 
terized by an exponential cutoff; the dotted lines refer to the MDs after the 
trasition, with the typical power-law shape. It is not represented by the merger 
discussed in § 6: a spike at ^ = Jt0 - M(t). This also applies to Figs. 6, 8, 9, 
and 10. 

GC and the FI components. We give in Figure 9 the results for 
this realistic case. Here the GC component—with its larger 
value of/for given exponents d, s, u—initially drives and leads 
the MD evolution toward large masses, but then the FI com- 
ponent with its larger value of A takes over and causes the 
phase transition to take place. The overall result is to shorten 

relative to the case where the FI component alone was 
considered. 

Similar results obtain from different initial conditions, in 
particular from a Gaussian distribution with the same initial 
total mass as shown in Figure 10 for / = 0. Starting instead 
from initial MDs already extending out to large masses, the 
conditions of the preceding paragraph apply even earlier, and 
again a faster transition obtains. So the evolutionary behavior 
is robust relative to variations of the initial conditions. 

5. TIME BEHAVIORS OF THE CHARACTERISTIC MASS 
In this and in the following section we look for analytic 

solutions of equation (2.1) from generic initial distributions. 

Fig. 7.—The mass of the system Jit for the FI case with A = 4/3, and/= 0 
is plotted as a function of time. The phase transition occurs at « 5i0. 
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Fig. 8.—The mass distribution under FIs with A = 3/2, computed with 
/= 1/3 for easy comparison with Fig. 5. The times are tjt0 = 0.5, i2/i0 = 1, 
i3/i0 = 2.8, tjt0 = 3.8, i5/i0 = 4.8. Again solid and dotted lines refer to the 
MDs before and after the transition, respectively. 

Fig. 9.—The mass distribution for the complete cross section (see § 2), with 
the GC and the FC components proportional to t and to i1/3, respectively, 
corresponding to the same pa oc í2/3, V oc i1/3, and p ~ constant. Times are as 
in Fig. 8. 

Then we shall compare these with the numerical results pre- 
sented in the preceding section. 

We look for solutions of the canonical form N(M, 
t) -��MJjc(i)“a0(m) in terms of the characteristic mass M^(i) and 
of the normalized mass m = Such form is convenient- 
ly normalized to the total mass of the system Jf, and so the 
previous Ansatz writes in full 

V(M, t) oc - 2(¡){m)IMl . (5.1) 

Note that when on— 2 applies mass conservation 
J dMMN(M) = J? holds. 

On substituting the Ansatz (5.1) in equation (2.1), the latter is 
separated into two parallel equations: an m-dependent equa- 
tion for 0(m) that reads 

1 — - dm'\¡/(m\ m — — m') (5.2) 2 Jo 
to within an arbitrary separation constant that is set by our 
definition t0 = td; and a i-dependent equation that reads 

M* = J?<x-2&'(t)Ml+x-a , (5.3) 

where J^(i) = ^ott/toY contains the time dependence of the 
interaction kernel. 

These two parallel equations are connected by the value of a, 
which is set by a consistency argument between the i-behavior 
and the m-behavior. In our serial exposition we shall consider 
such behaviors in turn. 

The solutions of equation (5.3) for M^(i) clearly depend on 
the value of a used in the Ansatz (5.1). Let us adopt first the 
canonical value a = 2 that implies canonical mass conserva- 

; 
dm'il/(m, m'Wm') 

4 Uniqueness of the solution of eq. (2.1) has been proved for the kernels 
where i^(m, m') is bounded from above by i¡/B oc mm' (see McLeod 1962). 

tion. Then the solutions of equation (5.3) read 

where 

= M*0< 1 
l/d-A) 

(5.4) 

(2-1) 
(/+1) 

(l + A)/2 
(5.5) 

For / < — 1, with either 2 < 1 or 2 > 1, such solutions saturate 
after a short rise (see Fig. 11). 

For/> — 1 with 2 < 1 the behavior after a slow start goes 
into a slanting asymptote M* oc tif+1)/(1 - A) (Fig. 12). For 2 > 1 
instead, even an inspection of equation (5.4) obtained upon 
insisting on the canonical value a = 2 will indicate a divergence 
of M*(t) at a finite time. We are about to show in the next 

Fig. 10.—Same as Fig. 5 but with a Gaussian initial condition (dashed line 
at the extreme left). 
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line). 

section that any such divergence of M* will cause mass non- 
conservation, and then the appropriate value of a will be pro- 
vided by a detailed analysis of the parallel equation for the 
shape of the MD, to read a = (A + 3)/2. Assuming this value 
for the time being, the strength of the actual divergence is 
doubled relative to a naive extrapolation of equation (5.4) to 
cases with >1 > 1, and the consistent solution of equation (5.3) 
writes 

M*(i) = M^o 
|2/(1-A) 

(5.6) 

with k > 0. Figure 13 illustrates the behavior of M*(t) for the 
values À = 4/3 and À = 3/2, and exhibits a strong formal diver- 
gence at the finite time 

2y/(/+i) 
t-=to[l+k) 

(5.7) 

Fig. 12.—The characteristic mass as a function of time for GCs in the 
field with/ = — I (solid line), is compared with Mc(t) according to direct hierar- 
chical clustering with a perturbation spectral index v = —1.2 (dashed line). 

Fig. 13.—The characteristic mass as a function of time for FIs with 
/ = 0. The solid line refers to X = 4/3, and the dashed one to 2 = 3/2. 

Specifically, when 2 = 4/3 we obtain « 5i0 for /= 0? and 
« 2t0 for/ = i. 

We stress that the characteristic mass M*(i) = <M2)/<M) 
may also be interpreted as the mass “correlation length,” and 
in general is not associated with any specific object. 

We now proceed to prove that a divergence in M*(t) causes 
in fact ^ ^ const to hold, and ultimately implies the value of a 
that was just assumed in this section. 

6. ASYMPTOTIC SHAPE OF THE MD 
To proceed, we need to derive m-behaviors of </>(m) from 

equation (5.2). These will differ radically for 2 < 1 and 2 > 1. 

6.1. When Mass Is Conserved 
We consider first the case a = 2, corresponding to MDs 

of the form (f)(m)/Ml that conserve the total mass of the 
system JÏ. 

The asymptotic shape in the limit m > 1 obtains from the 
dominant terms in equation (5.2), including the construction 
one on the right-hand side, 

^ ~ f dm'\l/(m\ m — m')(p(m')(t)(m — m'). (6.1) 
dm 2m J0 

To ensure convergence of the integral on the right-hand side 
in spite of the diverging behavior of oc m\ it is natural to try 
(j)(m) oc m~x6(m). The function 0(m) is found by direct substitu- 
tion into equation (6.1). In fact, in the limit m > 1 one obtains 
0(m) oc e-m so that the full asymptotic behavior reads 

0(m) ~ m~xe~m . (6.2) 
To find the behavior of </>(m) for m 1 we try a solution 

(j)(m) = Bm~^, (6.3) 
and look for the values Æ and £ by direct substitution in equa- 
tion (5.2) to find 

2-£ 
B f 

dm'\lf(m, m'Wm') — — 

f m 

x dm'il/(m, m — m')</>(m)</>(m') . 
Jo 

(6.4) 
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S The canonical procedure (Ernst 1986) would be as follows: 
; first, infer ^ = (2 + 1) by power counting in the above equa- 

^ tion; then use the value so obtained in the equation to get 
§ B = (l — À)/L(Ç), where 
CM 
S if1 

^ L(Z) = 2 ! dx\jj(x, 1 - x)[x(\ - x)] 

x [x2i-A“2 + (1 - x)2i“A“2 - 1] . (6.5) 
However, with our specific cross sections dominated for 

small m by mixed terms in m and m', the integrand in L(^) 
diverges for x ^ 0 and x -��1, and we have to resort to equation 
(6.4) in full to derive <^. The result is 

t = (6.6) 
where px is the moment of order À of the function </>(m). Since 0 
is not yet entirely determined, this exponent cannot be deter- 
mined analytically beyond setting the bound Ç <2 from equa- 
tion (6.6). For the GCs, our numerical computations give 
£ æ 1.3 in the relevant self-similar regime. For FIs, we shall see 
next that actually mass conservation does not hold, and we 
must start anew our quest for the asymptotic shape of the MD, 
which is crucial for predicting the evolution of the system. 

The key tool is provided by the mass flux crossing a given, 
large value of M (see van Dongen & Ernst 1985) that we 
denote by M: 

rut roo 
Jf(M, i) = - dMN(M, t)M dM'N(M\ t)K(M, M', t). 

JO Jjfr-M 
(6.7) 

This expression is derived by taking the first moment of equa- 
tion (2.1) with suitable interchanges of variables that do not 
require a cutoff in the MD. Substituting the Ansatz (5.1) one 
obtains a bistable behavior of ^(M, i), depending on the shape 
</>(m) of the MD. 

When 0(m) is of the canonical type in equation (6.2) with an 
upper cutoff, the mass flux satisfies lim^^^M, t)-+0, 
implying conservation of the total mass Æ So mass conserva- 
tion, a cutoff for N(M\ and M*(t) finite at any finite time 
constitute a set consistent with 2 < 1. 

6.2. When Mass Is Not Conserved 
On the other hand, a remarkable phenomenon arises when 

m<^l applies even as M is large, which formally requires a 
divergence of M* at a finite time. Indeed, we already know 
from § 5 that such a divergence is to occur when 2 > 1 (and 
/> -1). Then the asymptotic shape of the MD takes on the 
form stretched out as given by equation (6.3) also for large 
absolute values of M, and equation (6.7) yields the limiting 
mass flux 

lim^ Jf(M, t) oc _m3+a-2* ^ 0 . (6.8) 
But a finite value for ^ is to be required for a successful 

time-resolved description in terms of a single time scale (infinite 
values, equivalent to discontinuities of physical conditions on 
the basic scale, would require a second and finer time 
resolution). In fact, the condition for ^#(M, t) to remain finite 
reads simply 

£ = (2 + 3)/2 . (6.9) 

Furthermore, just because ^ is not conserved, now we 
cannot retain the canonical value cc — 2 corresponding to mass 

conservation. The right choice of a is obtained by direct substi- 
tution of the Ansatz (5.1) into equation (5.2) to yield 

B = (Ç — oc)/m . (6.10) 
If ^ = (2 + 3)/2 is to hold, then L(Q = 0 follows (see last factor 
in the integrand [6.5]). But then a finite B requires a = £. 

Beyond the critical point, the condition (6.9) must still hold if 
the mass flux is to remain finite. 

Note, as anticipated at the end of § 5, that the equalities 
a = £ = (2 + 3)/2 (6.11) 

also fix the strength of the divergence of M*(t) that occurs for 
2 > 1. So the formal argument closes up, having made use of 
these consistency relationships between the parallel i-behavior 
and m-behavior. 

The meaning of ^ < 0 is as follows. A divergence of M*(t) 
implies the tail of N(M) to be stretched out to large values of 
M. So the few objects in the tail will have effective merging 
times t quite below the typical value for most members, and 
will coalesce soon into a single large merger with a time scale 
shorter yet. As the Smoluchowski equation in the form (2.1) 
cannot describe kinetics with widely diverse time scales, the 
subsystem constituted by the merger is no longer described by 
the same equation as applies to the normal objects on the scale 
given by equation (3.1b) with the typical mass suited to the 
body of the distribution. The detailed kinetics of the merger 
interactions as seen by the normal members is replaced by a 
boundary condition on the M axis, that is, by the integrated 
outcome of the interactions constituted by the mass loss < 
0. Such a loss is consistent with the destruction term being 
strongly dominant for the normal members (cf. equation [5.2] 
with m 1), which in turn produces the power-law shape (6.3) 
of N(M). All this constitutes a valid description on the time 
scale of the normal galaxies provided that ^ be finite, which 
can be met as shown by equation (6.9). Overall consistency 
with global mass conservation obtains as the mass leaving the 
subsystem still described by equation (2.1) flows into the 
merger. 

Thus the system is to break into a bimodal distribution: (1) a 
first phase constituted by the normal members still following 
equation (2.1), therefore distributed after equation (6.4) and 
loosing mass at a rate <0; and (2) a second phase consti- 
tuted by the forming merger accreting mass at a rate | ^ |, that 
is, with a ¿-like mass distribution centered on the value 
Ji0 — Jt(t). 

In short, the set of propositions consistent with 2 > 1 (and 
/> — 1) comprises M*(t) diverging at a finite í; «x# < 0; and 
N(M) splitting into a power-law excess of small masses and a 
(5-like spike at a high and increasing mass. 

Such splitting and remolding of the MD provides, for 
example, a description for the formation of a large, dominant 
cD-like galaxy in groups (Cavaliere et al. 1991). In a broader 
perspective, it constitutes a gravitational phase transition. The 
divergence of M* at a finite time t^, necessary to have 
J?(M, í) 0 and finite, plays a role analogous to the diver- 
gence of the correlation length in theories of critical pheno- 
mena (see Domb & Lebowitz 1988). The appropriate order 
parameter is given by 1 — 

7. COMPARISON OF ANALYTIC AND NUMERICAL RESULTS 
Here we compare the numerical results given in § 4 with the 

asymptotic behaviors of the MDs given in §§ 5 and 6. 
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! The mass nonconservation and the lowering power-law 

^ MDs noted for i > in the numerical results for FIs (X = 4/3) 
< with/ = 0, ^ (Figs. 4, 5) correspond to the divergence of M*(t) 
^ appearing in equation (5.6) for 2 > 1 and / > — 1, and to the 
^ mass flux ^ ^ 0 in equation (6.8). 

The slope of the postmerger distribution (i.e., at í > O as 
computed numerically from Figure 5 is ^ ä 2.15, and agrees to 
within 1% with the value (À + 3)/2 = 13/6 evaluated analyti- 
cally in § 5 at and beyond the critical time. 

As for GCs with — | </< f, the numerical results (Figs. 
1-3) show a time change in the MDs toward a self-similar 
shape consistent with equations (6.2) and (6.3). In terms of M 
and t, the self-similar distributions N(N, i) oc M'^M/M*) 
evolve at the rate given by M^t) in equation (5.4) with X < 1. 
The slope of the power-law section is ä 1.3 (see Fig. 3), the one 
result that cannot be predicted analytically for reasons dis- 
cussed in § 6. By way of contrast, the MDs in Figure 1 are not 
yet out of the transient regime, due to the low value of / used 
there. 

For both GCs and FIs a faster evolution numerically 
obtains with increased values of / (cf. Figs. 1-3, 5-6), a fact 
explained analytically in terms of a larger exponent in the 
expressions for M*(t) given by equations 5.4-5.6. Furthermore, 
the standstill of the MD observed—after a short transient—in 
the numerical solutions for / < — 1 (Fig. 4) reflects the satura- 
tion of the Ms|c(i) shown by equations (5.4) and (5.6). 

We also computed numerical solutions for the value 2 = 1, a 
critical value where several of the asymptotic expressions (see, 
e.g., § 5) lose meaning. We find behaviors qualitatively similar 
to those for /I > 1 at equal values of /. 

A final remark is that the numerical computations solve, in 
fact, the discrete counterpart of equation (2.1) for the concen- 
tration Nk of the mass Mk = /cM0, Jmax 

= ï Z K(i, j)Ni Nj - JV* £ K(k, j)Nj, (7.1) i+j=k j=l 
where summations over a finite number of members replace 
the integrals. The agreement of the numerical solutions with 
the analytical results from equation (2.1) proves the equiva- 
lence of the two formulations. 

8. SUMMARY AND DISCUSSION 
8.1. Summary 

We propose a pattern that captures essential aspects of the 
complex phenomena of merging between high-contrast 
members of cosmic structures. Specifically, we consider gal- 
axies in groups or in the field, and subclusters in forming clus- 
ters. 

Starting from the aggregation kinetic equation of Smolu- 
chowski, we derive numerical and analytical solutions, that 
agree quantitatively; compare for example, the key results in 
Figures 5 or 6, 7, and 13 with those in equations (6.3), (6.8), and 
(5.6). Both kinds concur with a long sequence of simulations of 
galaxy merging started by Toomre & Toomre (1972), and 
taken up for galaxies in groups by, for example Aarseth & Fall 
(1980), CCS (1981), Barnes (1989). They concur also with simu- 
lations of cluster formation by Cavaliere et al. (1986), West et 
al. (1988), and Carlberg & Couchman (1989). 

The general message is that in finite, self-gravitating systems 
the component condensations are sensitive to the action of 
gravitational aggregations. Shape and evolution of the member 
MD tend to become independent of initial conditions. The evo- 
lution may undergo a merging runaway capable of remolding 
the MD over a few dynamical times in systems with longer 

lifetime and limited membership. In galaxy groups such pro- 
cesses correspond to aggregation of member galaxies into a 
large cD-like merger; in clusters they correspond to aggre- 
gation of subclumps into a relaxed cluster configuration. These 
processes bear the marks of a critical phenomenon, and specifi- 
cally of a gravitational phase transition. Aggregation, as a two- 
body process, is sensitive to the cosmic density decrease and 
hence would not sustain a lasting growth of structures in the 
“ open ” field. 

Quantitatively, a positive feedback loop is started yielding 
shorter and shorter time scales tocí-/M1-a, when aggre- 
gations take place by focused interactions (FIs) of conden- 
sations with a nonlinear cross section (X> 1), and with a 
number density not strongly decreasing (/ > — 1). As a result, 
the a merging runaway develops, and on the scale of a few 
dynamical times td leads to rapid growth of a large merger at 
the expenses of the normal system members, whose original 
total mass J?0 is not conserved. Specifically, the following phe- 
nomena occur: the characteristic mass M^í) oc (¿4+1 

— formally diverges in a finite time; the shape of 
the mass distribution N(M, t) corresponding to the normal 
galaxies tend to be stretched out into a scale-free power law B(t) 
M-(A+3)/2, while a second ¿-like component develops, corre- 
sponding to the formation and growth of a single merger; a 
finite mass flux <0 transfers mass from the first to the 
second component of this bimodal distribution; and the flux is 
related to the lowering amplitude of the power-law component 
by £(i) oc I Jf 11/2. 

8.2. Analytic Technique 
Since they constitute a pattern of specific and general rele- 

vance, we summarize our main technical points in the form of 
three consistency arguments, complemented by three stability 
checks. 

1. A consistent description in terms of a single time scale. 
Our main thrust is toward a description of dN/dt from 

aggregations, resolved on a single time scale. But when M^t) 
diverges at a finite time, N(M) tends to be stretched out into a 
power law toward large values of M, so that the system as a 
whole would develop a range of time scales (in a naive approx- 
imation t ~ 1/nZV oc i_/M1 ~A) extending toward zero. This is 
too wide a dynamic range to be described by the Smolu- 
chowski equation on the time scale characteristic for the body 
of the MD. 

Instabilities of numerical computations at high masses stress 
the point dramatically and to be controlled require finer 
meshes in M and i, leading to very long computing times. 

On the analytic side, the largest masses corresponding to the 
shortest merging times are conveniently separated out, and 
replaced by a boundary condition describing their integrated 
action onto the residual “ normal ” galaxies. Such action corre- 
sponds to the mass flux <0 toward the merger, related to 
dominance of the destruction term in the equation for the 
normal subsystem. 

A finite value for JP is to be required for a time-resolved 
description in terms of a single time scale. 

The whole scheme meets success since the requirement of 
such a finite Jï <0 can be indeed enforced by the composite, 
but ultimately simple, consistency argument summarized 
below. 

2. Consistent t- and M-behaviors. 
The original Smoluchowski equation with the Ansatz 

N(M, t) oc separates into a i-dependent and 
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S an M-dependent equation, related by the value of the param- 
^ eter a that both contain. 
^ The M-equation is solved asymptotically for large and for 
^ small values of M/M*. In the latter regime power-law behav- 
S iors are found, corresponding to dominance of the destruction 
2 term. 

On the other hand, when /I > 1 holds (with / > — 1), the 
i-equation yields a diverging M*(t) cc 1 _ ¿z*1)1/*1+*-<*) 
But then asymptotic form for M/M* 1 applies even in the 
body of the M-distribution (¡)(M/M*). The ensuing solution 
(j) -+(M/M*)~a corresponds to unbalanced destruction. This 
implies mass loss from the body of the MD, at a rate ¿k oc 
— M3 + A-2a. 

A finite rate requires a = (2 + 3)/2. At a single stroke, this 
determines both the true strength of the divergence in M*(t) 
and the slope of AT(M, t) at the critical point, and actually 
beyond. 

3. Consistency with global mass conservation. 
This obtains as the mass leaving the subsystem still 

described by equation (2.1) flows into the merger. Thus the 
system is to break into a bimodal distribution. 

4. Stability. 
Our description is stable relative to different values of the 

finite system mass J?. This is shown—once the condition 
a = (A + 3)/2 is satisfied—by the full, finite-size version of 
equation (6.8) which reads cc—M3+X~2a[l + 0(MJ 

The evolutionary behavior is also robust relative to varia- 
tions of the initial conditions. Indeed, widely dispersed initial 
conditions accelerate the onset of the critical phenomenon. 

Finally, we discuss below in § 8.5 how the critical phenome- 
non is actually accelerated when a realistic cross section is 
considered, including a geometric and a focusing term. 

8.3. Gravitational Phase Transitions 
The merging runaway gone to near completion constitutes a 

neat instance of a cosmic phase transition of a gravitational 
nature in the relatively nearby universe. In the perspective pro- 
vided by theories of critical phenomena, the characteristic 
value of the mass M* = <M2)/<M) plays on the mass axis a 
role analogous to the correlation length in ordinary space, 
whose divergence is indicative of organized behavior embrac- 
ing the system. At the divergence V(M, t) becomes scale-free, 
and instead Jf(t) takes over in the role of the physically rele- 
vant quantity; in fact, the order parameter appropriate to the 
present transition is constituted by 1 — Jt(t)/Ji0. The gravita- 
tional free energy ociV2, so tat the critical phenomenon consti- 
tutes a second-order transition. 

While the qualitative outline of the phase transition is pro- 
vided by the mean field equation (2.1) in dilute approximation, 
it will constitute matter of further study—in analogy with the 
development of other theories of critical phenomena (cf. Domb 
& Lebowitz 1988)—to find how the quantitative values of the 
critical indexes may be modified by a proper account of realis- 
tic and growing correlations. Here we note that a condition for 
equation (2.1) to apply, namely no pairwise correlations of 
initial velocities, implies (J?/M)213 > 1. When aggregation 
operates among a few units, the initial velocities may instead 
be correlated, and equation (2.1) may not apply literally. But 
then (at given angular momentum) the equation provides an 
upper bound to the time for aggregation to occur. 

The gravitational transitions are closely analogous to the 
phase transition sol to gel (“gelation”) occurring in suspen- 
sions of aggregating particles, which is represented by a closely 
similar, but in fact simpler, aggregation equation with the 
integro-difierential structure (2.1) as reviewed by Ernst (1986). 
We have, in fact, two additional structural features : the first is 
constituted by the finiteness of our gravitational systems; the 
second feature is constituted by the explicit time dependence of 
the kernel, see equation (3.4), mainly related to the drifting 
density of colliding condensations. 

8.4. Environmental Effects 
The two-body aggregations are clearly sensitive to the t- 

dependence of the ambient density, an effect directly embodied 
into the time scale t oc t~fM1~x. Bound systems provide quite 
a different density run from the field. In addition, in finite 
systems the velocity dispersions entering the cross section 
depend on relative sizes. 

8.5. Bound Systems 
In self-gravitating, finite systems the relevant time scale is 

provided by the internal time td set at system collapse, multi- 
plied by a factor governed by the mass ratio Ji/M*, as speci- 
fied by the expression for t^ in equations (5.7) and (5.5). 
Continued evolution obtains as the ambient density is increas- 
ing or constant, such as to yield / > — 1. With GCs alone, the 
negative feedback by the growing aggregates (expressed by eq. 
[3.4] with A < 1) holds back the evolution and causes the MDs 
to settle to a mild, self-similar regime. Instead, with FIs impor- 
tant the condition A > 1 holds, the feedback is positive and 
drives a runaway ending up in the phase transition. 

The FI model discussed in the text uses the simple scaling 
r oc (M/p)1/3, and yields a cross section scaling as M4/3. Alter- 
natively, the empirical Faber-Jackson relation Lccv* (Faber 
1982) presumably describes the specific galactic structure, and 
with the constraint M/L ~ const yields the scaling M3/2, inde- 
pendently of p. As long as this holds, not only the runaway 
takes place because the key requirement A > 1 is satisfied, but 
in fact it is even faster, as shown by equations (5.4) and (5.6). 
The quantitative effect is to decrease t^ by a factor ~ 1.5, from 
« 5td to » 3.3td for/ = 0. 

The transition from GCs to FIs is marked by values 
v2/V2 > j. In bound systems v2/V2 ~ R/rJV' holds, and the 
condition t;2/T2 > ^ for FIs to prevail implies < 30. Even 
when this condition is not strictly satisfied, and aggregations 
are governed by GCs, the stronger M-dependence of the FI 
component will cause it to prevail eventually, as shown in 
Figure 9. A similar behavior also occurs with the time depen- 
dence of the cross sections. Given behaviors of p(t\ pa(t), and 
V(t) combine to yield for FIs values of/~ smaller than the 
corresponding values for GCs. In such conditions, the stronger 
i-dependence of GCs drives the initial evolution of M*(t) so 
that N(M) extends toward large values of M. Then the stronger 
M-dependence of FIs takes over and is responsible for the final 
transition. Widely dispersed initial conditions will only speed 
up the prevalence of FIs. 

Considering a wider range of V/v values, two extreme 
regimes may be envisaged: for V/v — 1, resonant interactions 
end up to dominate and start the runaway, as said above; 
when instead V2/v2 > 1 holds initially, the evolution by the 
GC process is self-similar and slow, liable to an early termina- 
tion by inclusion of the system into a still larger cluster. 
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One condition that tends to enhance V2 at given luminous 
mass is the presence of diffuse dark matter (as distinct from 
individual dark galaxian halos); then the merging times tend to 
be stretched out. Actually, the situation with dark mass is 
complex, because the former effect competes with increased 
dynamical friction. On the other hand, individual halos may be 
stripped and shed by encounters, and by tidal forces from the 
overall potential. Such interplay of three effects warrants simu- 
lations aimed to cover relevant ranges of galaxian and of 
diffuse M/L. 

In rich clusters the velocity dispersion is large enough to 
suppress the direct mergings, making it difficult to build up a 
cD body inside rich clusters by this process (CCS 1981 ; Merrit 
1983; Richstone & Malumuth 1983; Bothun & Schombert 
1988). In such environments, a slower form of merging may 
prevail (see Richstone 1990); first, dynamical friction segregates 
the galaxies to the center, then merging or cannibalism take 
place. 

We note other physical parameters opposing direct galaxy 
merging: (1) Crowded systems, implying interference of inter- 
lopers with the two-body collisions and slingshot effects 
(Saslaw 1985; Mamón 1990): but high average density and 
large membership do not occur together in cosmic structures. 
(2) A large systemic angular momentum: this is not statistically 
expected in many-body systems from the action of external 
tides and of aggregations (see Saslaw 1985), while selected 
initial conditions (see Governato, Bathia, & Chincarini 1991) 
can be embodied in our dscription under the reduced form of a 
small r¡ multiplying (3) Strong radial dependence of V in 
the potential well: but our model theory still describes the 
evolution of the central region, while the halo contributes a few 
late comer components with high velocities that may survive 
several collisions. 

Even under favorable conditions the runaway is eventually 
stabilized as resonant interactions are quenched by the 
decrease in number and size of the surviving galaxies. These 
become small also because the least bound external regions are 
peeled off by grazing interactions. The residual interactions 
with the merger are best described in terms of dynamical fric- 
tion, with asymmetrical cross sections (see Alladin et al. 1988), 
of satellites with large angular momenta. 

With all the caveats said, the reality of runaways gone to 
near completion is supported not only by the results from the 
sequence of simulations referred to in the Introduction, but 
also by real observations of such groups dominated by a 
cD-like galaxy (e.g., MKW11, AWM4, AWM7) as cataloged 
by Morgan, Kayser, & White (1975) and by Albert, White, & 
Morgan (1977). Indirect evidence is provided by X-ray emis- 
sion from groups (cf. Schwartz, Schwarz, & Tucker 1980; Bier- 
mann, Kronberg, & Madore 1982; Kriss, Cioffi, & Cañizares 
1983), since extensive merging action induces shrinking of the 
overall configuration so increasing the density of the inter- 
galactic gas. Thus the bremsstrahlung emissivity is boosted, 
and sustained over several dynamical times. 

The observed low frequency of such cD-dominated groups is 
the result of competing time scales. The pure merging runaway 
takes a time around 3td. This is longer than the average time 
needed for a reshuffling of the group into a larger unit, an event 
that is likely to brake or stop the process. The percentage of 
resulting systems containing cD or cD-like galaxies is around 
7%, as for the process here described. 

In rich clusters, instead, merging occurs between subclusters 
and groups falling together at formation. The phase transition 

appears as rapid erasure of substructure during the collapse 
and virialization of the overall structure (see also White & Rees 
1978). Such processes at large scales may restart merging of the 
cD or the cD-like galaxies already formed in subclusters and 
carried with them into larger condensations (Ostriker & Tre- 
maine 1975; Edge 1991). If so, the luminosity of the brightest 
cluster members must correlate in detail with Bautz-Morgan 
morphologies of the host clusters; on average, it may increase 
with cosmic epoch as long as the merging rate of the host 
systems overcomes decay of the stellar populations. 

Technically, the present formalism holds as it stands when 
many subclusters aggregate to form a large cluster, a condition 
prevailing when the spectral index of the initial perturbations 
v > -1 (see CC 1990). Because r/R is relatively larger in this 
case, the time scale t - td/n0 ER is relatively shorter compared 
with galaxies in groups, = 2-2.5td for /= 0-^ and with 
n0 = 5 Mpc-3. In addition, when only a few subclusters aggre- 
gate, the correlations may shorten the scale further. Because 
rich clusters are young systems forming around the present 
epoch, the process is likely to be observed in action in a fair 
fraction of such structures, as in fact is shown by the optical 
and especially by the X-ray evidence mentioned in the Intro- 
duction. Once again, iV-body simulations, as discussed by CC 
(1990), show in detail the course and the statistics of the 
process. 

8.6 The Field 
In the field the role of merging interactions is very different 

from that in self-gravitating systems. In the canonical, “ open ” 
field of a FRW universe the strong decrease of the ambient 
density, pacct~2 or faster, implies /^ — 1 which drastically 
reduces the efficiency of merging interactions like all two-body 
interactions. Then the evolution driven by either FIs or GCs is 
braked to a standstill, as indicated by the numerical results of 
§ 4 and by the analytical results of §§ 5 and 6. 

With FIs, although the mass dependence is stronger, given 
behaviors of p(£), p?(i), V(t) combine to yield/< -1, capable of 
freezing the evolution anyway. In sum, in a three-dimensional 
field of a FRW universe, the decreasing ambient density inhi- 
bits merging runaways. The GC component alone would 
produce appreciable self-similar evolution in the field under 
the unlikely condition/^ — | (see Table 1). 

Even with pure GCs, our solutions of equation (2.1) differ 
sharply from the fully self-similar solutions (see Silk & White 
1978) forced to evolve on a cosmic time scale by the assumed 
condition t oc i. In a heuristic look, such a condition might 
be induced in the field of a critical universe by oc i-2, since 
the condition t - l/(Gpa)1/2 -��t may in principle apply. 
However, for this to hold quantitatively quite some fine tuning 
must be enforced for two quantities of different stand and 
origin: A = 1, associated with the nature of the two-body inter- 
actions; andf = — 1, reflecting the ambient conditions. These 
two equalities are to hold together to yield tif+mx~1) oc t. In 
an open universe the even stronger expansion eventually 
freezes the evolution anyway, because t/í oo. 

The competition between merging interactions and direct 
collapses may be discussed in terms of a comparison of equa- 
tion (2.1) with the other equation 

m 
dt 

N_ 
T 4- 

N_ 
T_ 

(8.1) 

that describes DHC theories; t_ = 3i/2 and t+ = t_m 2a 

apply in the simplest instance (CCS 1991). 
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oj The two equations have analogies, including the structure of 
^ the destruction term and the existence of self-similar regimes. 

; However, they differ radically in the memory of the initial 
£ conditions they retain: limited to a short transient for the 
SÍ aggregation process, and persistent at all epochs in the DHC 
S process. In fact, in the latter case the solutions of equation (8.1) 

are always self-similar, with the characteristic mass Mc(t) oc 
i4/(v+3). For v < 0 this is faster than its counterpart MJt) oc 
t(f+D/a-i) fTOm self-similar aggregations (see Fig. 12) indicat- 
ing better efficiency of DHCs in building up new structures in 
the field. In addition, the slope of DHC solutions are steeper 
than the aggregation solutions in their self-similar regime, indi- 
cating dominance of the former also at low masses. 

Actually, the two processes play different and complementary 
roles in structure formation. Initially the DHCs set up fore- 
runner modulations of the density field on the overall scale of 
the collapse; then the aggregations become effective within 
such forming structures. The share of DHCs grows for v < — 1 
(the perturbation field is dominated by relatively few, accreting 
peaks), that of aggregations for v > 0 (interactions between 
equals become more likely). 

We mention (from Cavaliere, Colafrancesco, & Menci, in 
preparation) that pure merging processes in the field have a 
hard time explaining the rapid anti-evolution of clusters lumi- 
nosities in X-rays at z > 0.2 observed by Gioia et al. (1990), 
Edge et al. (1990), and Henry et al. (1991). As said, field aggre- 
gations cannot sustain a fast and lasting growth of structures. 
In their self-similar regime they are too slow to match the 
DHCs with v < — 1, even considering that for the X-ray lumi- 
nosities Lee M2 5 may hold in this context (Edge et al. 1990), 
ao that Lc(z) is accelerated relative to Mc(z). The initial, short 
transient regime may be construed to be fast by ignoring the 
kernel dependence on time and adjusting the efficiency. But 
then it would produce an almost equally strong anti-evolution 
in the optical band at z ~ 0.5, for which to now there is little, or 
rather contrary evidence (Dressier & Gunn 1988; Gunn 1990; 
Ellis 1991). 

8.7. Low-Dimensionality Structures 
On the other hand, the role of merging is enhanced not only 

in truly bound structures, but also in all environments where 
the density does not decrease strongly. As an extreme case, 
merging phenomena would be widespread and overwhelming, 
at an ever increasing rate, in the recollapse stage of a super- 
critical universe. 

Even when the average Q < 1 holds, a homogeneous iso- 
tropic field expanding like pacct~d with d = 2-3 may be a 
myth after all. Deep redshift surveys (e.g., Sutherland 1988; 
Ramella, Geller, & Huchra 1989), large-scale simulations (e.g., 
Efstathiou et al. 1988; Villumsen 1989; Carlberg & Couchman 
1989), and quasi-linear analyses (see Shandrin & Zel’dovich 
1989; V. Lukash 1991; private communication) all concur in 
outlining a universe tessellated by voids surrounded by precur- 
sor ridges and filaments. Such low-dimensionality structures 
looming out at larger z in scaled form may provide especially 
at their intersections “protected” sites with enhanced contrast, 
reduced expansion, and nonradial velocities, where merging 
activity is likely to be triggered and sustained both for galaxies 
and for groups and clusters. 

Such milder or incomplete, but widespread variants of the 
aggregation activity may be relevant (Cavaliere, Colafrancesco 
& Menci, in preparation) both for X-ray cluster anti-evolution 
with increasing z, and also for positive number evolution that 
may produce the excess of faint galaxy counts discussed by 
Tyson (1988), Cowie et al. (1990), Koo (1990), and Guiderdoni 
& Rocca-Volmerange (1990). 

We are grateful for helpful discussions to F. Lucchin, S. 
Matarrese, M. Vietri, and W. C. Saslaw. Thanks are due to the 
referee for his helpful and stimulating comments that induced 
considerable improvements in the presentation. We acknowl- 
edge grants from ASI and MURST. 
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