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ABSTRACT

We study the evolution of the galaxy velocity distribution in galaxy clusters under binary aggregations.
Starting with an initial Maxwell distribution, we solve the complete Boltzmann-Liouville equation including
collisions. We find an asymptotic distribution characterized by a galaxy velocity dispersion smaller than that
of the dark matter. This is due to the transfer from orbital to internal energy occurring in galaxy merging,
which is not completely balanced by the galaxy response to the cluster gravitational field. As a consequence,
the value of the parameter § that enters in the standard hydrostatic isothermal f-model is less than 1, as
determined from the fits to the X-ray surface brightness data. The result is robust with respect to different
shapes of the cluster mass distribution. The dependence of f on the cluster velocity dispersion and size is
computed and discussed.

Subject headings: galaxies: clusters: general — galaxies: distances and redshifts — X-ray: galaxies

1. INTRODUCTION

Much observational evidence (Kent & Gunn 1982; Kent & Sargent 1983) indicates that the galaxy velocity distributions in
regular clusters of galaxies are in a relaxed quasi-stationary state, believed to be reached by “violent relaxation” during cluster
formation. In this case, the equilibrium state can be derived as the most probable phase-state configuration that conserves energy,
momentum, and particle number. In the absence of galaxy collisions, this state is characterized by a Maxwell-Boltzmann distribu-
tion (Lynden-Bell 1967) where the velocity dispersions of the galaxies, <v2)!/2, and of the dark matter particles, o, are the same and
are given by the virial theorem.

The most stringent test of this picture comes from cluster X-ray observations. In fact, the X-ray emission is due to a diffuse
intracluster gas which is in equilibrium with the cluster potential wells and emits by thermal bremsstrahlung (Cavaliere, Gursky, &
Tucker 1971; Solinger & Tucker 1972). Thus, the gas temperature T is a direct probe of the cluster potential and can be directly
compared with the galaxy velocity dispersion.

This comparison is performed in terms of the parameter § = pm,{v?>)/3kT (u is the mean molecular weight, m, is the proton mass,
k is the Boltzmann constant, and {v2)/3 is the line-of-sight velocity dispersion), which enters in the hydrostatic isothermal f-model
(Cavaliere & Fusco-Femiano 1976) used successfully to fit the X-ray surface brightness emission from numerous clusters of galaxies
(Gorenstein et al. 1978; Branduardi-Raymont et al. 1981; Abramopoulos & Ku 1983; Jones & Forman 1984).

The value of f was first measured from fits of the f-model to the surface brightness distribution of clusters. Using Einstein X-ray
data for rich clusters, Jones & Forman (1984) found an average value of B, ~ 0.64, while for groups, Kriss, Cioffi, & Canizares
(1983) found fg;, ~ 0.41. These values of f < 1 indicate that the intracluster medium (ICM) is hotter and more extended than the
galaxies. If the gas is in equilibrium with the dark matter, then < 1 indicates that the galaxies have a velocity dispersion smaller
than the value predicted by the virial theorem.

This measure has been largely debated. In fact, the parameter f can also be evaluated from optically determined galaxy velocity
dispersions and direct spectroscopic X-ray temperaures of the gas. The value f;,.. measured in this way is found to be larger than
Brie by a factor of 1.5-2 (Mushotzky 1984, 1988; Sarazin 1986). Evrard (1990) found the same discrepancy by performing a
hydrodynamic simulation of the ICM. This is attributed to ignoring incomplete thermalization of the gas and to assuming a poor
modeling of the underlying binding mass distribution.

Edge & Stewart (1991) analyzed a sample of 23 clusters of galaxies, finding an average value of g, ~ 0.91 which is reduced to
0.83 after exclusion of the peculiar clusters Perseus and A2147, which have f,,.. =~ 1.8. The better agreement of this measure of f,..
with B, is due mainly to the better quality of the optical data (which has reduced the high velocity dispersion in several clusters)
rather than to changes in measured temperatures or to a different composition of the samples used to derive ... The overesti-
mated values of the velocity dispersion may be due to the presence of significant velocity substructures as found by Fitchett & Smail
(1991) in the Perseus Cluster (a value f,.. > 1 has been suggested as an indicator of substructures in clusters). The conclusion of
Edge & Stewart (1991) is that both f;, and .. are less than 1. Finally, Gerbal, Durret, & Lachiéze-Rey (1994) observe that there is
no contradiction between theory (Bg;, = Bp..) and observations (g, < fp.c) and that the discrepancy was only the consequence of
an oversimplification of the dynamical problem.

Recently, Lubin & Bahcall (1993) analyzed a sample of 41 clusters of galaxies for which both T and (v*)!/?> were observationally
determined, finding an average f,.. = 0.94 & 0.08 compatible with a f-value equal to 1. The higher percentage of clusters with
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line-of-sight galaxy velocity dispersion greater than 1000 km s~ ! present in this sample (~30%) with respect to that analyzed by
Edge & Stewart (~ 17%) may be the origin of the difference between the two measures.

Bahcall & Lubin (1994) discussed the possibility of resolving the f-discrepancy using the observed radial galaxy distribution in
rich clusters, n(r) ~ r~24%%2 for 1 hs! < r < 3 h; Mpc (Seldner & Peebles 1977; Peebles 1980), instead of the previously assumed
King approximation, n(r) = ng(1 + r2/r?)~32 - r~3 for r much larger than the core radius r..! They found a corrected B, ~ 0.84

+ 0.07, which is compatible with the value B, ~ 0.94 + 0.08 derived from Lubin & Bahcall (1993).

However, for r < 1 hsg' Mpc, the King model gives an accurate description of the density profiles. Thus, to provide a good fit, the
Seldner & Peebles distribution must be normalized to give the same density as the King model at r = 1 h5g' Mpc. When this is done,
a smaller correction obtains, and g, < 0.7 for a mean value of B, = 0.64. In addition, it remains difficult to explain with this
argument the differences between groups and rich clusters and, in particular, to make galaxy groups compatible with § ~ 1.

We also note that even an isothermal galaxy distribution yields f;, < 1 for the Coma Cluster (Fusco-Femiano & Hughes 1994).
Thus, all the physically motivated galaxy distributions used so far give f;, < 1, so that the problem seems not to derive from the
specific galaxy distribution used to fit the data.

A possible solution might consist in assuming an additional energy source for the gas in the form of galactic winds (see, e.g., the
numerical simulation by David, Forman, & Jones 1991 concerning the interstellar medium of elliptical galaxies). However, White
(1991) showed that such energy input is negligible for rich clusters.

The alternative which will be explored in this paper, is that (v?)!/2 < ¢ (velocity bias). In this case, the gas is actually in
equilibrium with the potential so that um,2/3kT = 1,but § = (v*)/¢* = b2 < 1.

The velocity bias has been found in numerous N-body simulations (Carlberg & Dubinski 1991; Evrard, Summers, & David 1992;
Katz & White 1993; Carlberg 1994) and implies an energy loss of the galaxy population. Its value from the simulations is
0.7 < b, <09, in agreement with the X-ray observations. A recent three-dimensional hydrodynamical N-body simulation of a
Coma-sized cluster of galaxies (Metzler & Evrard 1994) found a velocity bias b, &~ 0.85, which yields f < 1.

Recent simulations by Carlberg (1994) show that velocity bias in clusters is a dynamical effect, arising in the absence of a viscous
or dissipating gas component. The origin of the effect is still unclear.

In this paper we propose galaxy aggregation as a possible mechanism leading to velocity bias. In fact, during galaxy merging, the
orbital energy is transferred to the internal degrees of freedom, thus “cooling” the galaxy velocity distribution despite the
counteracting effect of the cluster gravitational potential. In particular, we study the modification of the galaxy velocity distribution
f(v) due to binary mergings. We start at ¢ = 0 with a Maxwell distribution with velocity dispersion {v*) = [ f(v)v? d*v equal to the
dark matter g, so that initially f(t = 0) = (v2>,_o/0? = 1. Then we investigate the possibility that galaxy aggregations will modify
f(v) at later times, thus producing an asymptotic {(v?) < o (velocity bias) so that § < 1.

To follow the time evolution of the velocity distribution, we solve the complete (collisional) Boltzmann-Liouville equation
including aggregations, which we introduce in § 2. In § 3 we propose a perturbative approach, used in § 4 to derive numerical
solutions.

The evolution of the galaxy distribution results from the opposite action of two effects: the galaxy collisions (tending to shift the
velocity distribution toward small velocities) and the galaxy response to the cluster gravitational field (tending to balance the effect
of the collisions). We discuss the conditions under which this dynamical process is effective in producing a small velocity bias and
the dependence of the results on the dark matter velocity dispersion ¢ (characterizing the deepness of the cluster potential wells), on
the cluster size, and on the shape of the cluster density distribution. Finally, we compare our results with the observed dependence of
B on the cluster characteristics (§ 5).

2. COLLISIONAL BOLTZMANN-LIOUVILLE EQUATION FOR AGGREGATIONS

One possible mechanism for a decrease of the galaxy average velocity may be provided by the transfer of orbital energy to the
galaxies’ internal degrees of freedom, which can be realized through galaxy mergings. To study the evolution of the velocity
distribution (and of its moments), we solve the Boltzmann-Liouville equation for the phase-space density F(v, r) of colliding galaxies
in the cluster gravity field (with potential ), which are allowed to aggregate with cross section X. This equation reads

OF(v, r 0F(v,r) 0Oy OF(v,r)
ot ) tv: or + 6—1/', : # = | &0y 0, 0,01, V2)E(,)F (3, 1)F(vy, 12)3(0; + v, — v/2)

— F(v, r) jdavl Vre(ts 01)E(0,)F(vg, ), (2.1)

where r = (r, 0, ¢) and v = (v, ©, ®) are the particle position and velocity in spherical coordinates, v,,(vy, v,) = |v, — v, | is the
modulus of relative velocity of particles 1 and 2, and the d-function in the first integral represents the conservation of momentum for
an aggregation of particles 1 and 2 of equal mass m into a particle with mass 2m (all the galaxies are considered to have the same
mass). This form of momentum conservation is the one appropriate for aggregationt and does not conserve the energy (which is
transferred to the internal degrees of freedom not appearing in eq. [2.1]), so that the condition expressed by the J-function is
essential here. It expresses the orbital energy loss of the galaxy population.

The terms involving space and velocity derivatives on the left-hand side of equation (2.1) express the variation of F(v,, r;) due to
the usual Boltzmann term (including the action of the gravitational potential), while the right-hand side expresses the changes due to
aggregations following galaxy collisions. We now assume the space density n(r, 8, ¢) and the velocity distribution f(v, ®, ®) to be

! Here h,, is the Hubble constant normalized to 50 km s ~* Mpc.
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isotropic and independent, so that

F(v,r)=n(n)f(v) . (22
In the following we shall also assume that the space density has a self-similar shape, i.e.,
n(r) = ng q(x) with x=rfr., 2.3)

where n, is the central density and r, is a characteristic radius for the distribution. This ansatz subsumes most of the more
commonly used n(r) (see King 1966; Bahcall & Sarazin 1977). In fact, we are going to integrate over r, so the detailed shape of the
space density is not crucial.

Using the ansatz (2.2) and (2.3) we can integrate equation (2.1) over the position r to obtain [the temporal argument of f(v) will be
omitted for simplicity]

2L+ Lo+ | [ ) | L2 = norsto, 4

S(v) = J 4%, d%0; 0,0, 9)Z(0,) f(01) S (02)0(0; + v — ©/2) — f(v) Jd%l Vrel®s 0)2(0,er) f(01) - (2.4b)

Here a = | dxx?q(x), n = | dx x?0,q(x), and y = | dx x*q*(x) result from integrating the space density over the position and extend
over the entire volume of the cluster. The function B(r) includes the dependence on the potential /(r); we will discuss this term later.
Using the constraint on momentum conservation expressed by the J-function, the first term of S(v) in equation (2.4b) reduces
to integration only over v,. In this term, after the momentum conservation constraint, v, = |v,| =|v/2 — vy | and v, (v, v;) =
vy — 0| =120, — (1/2)].
We integrate the resulting equation again over dQ = d cos © d® (the angular components of v) to get an equation only in the
variables t and v, which reads

L0 L g+ | [ e | L2~ morsto (.52
1
0= 3 | d0] [ d0,0300, 00 0001152 = 1) 10 [ doy 2 0B 00 . (2:5b)

where dQ, = dcos @, d®,.
3. PERTURBATIVE APPROACH

To solve equation (2.5) we adopt a perturbative approach. We start at ¢t = 0 with no collisions, and we look for solutions of the
form

f(v’ t) =f0(v) +fp(va 1, 3.1)

where f, is the time-independent initial condition which must satisfy the noncollisional equation [eq. (2.5) with S(v) = 0] and f,(v, ?)
is a small perturbation due to the onset of collisions. We now impose the condition that the unperturbed solution is a Maxwell
distribution with velocity dispersion ¢ (Lynden-Bell 1967; Shu 1978):

)= (7

On substituting equations (3.1) and (3.2) into equation (2.5a) with S(v) = 0, the time derivative is null and we obtain the relationship

3/2
) = (3.2)

jdar B(r) = o?y/r. , (3.3)

so that equation (2.5) is now fully determined and reads
x M 1 [3 f)+o a—f(;@] = noyS(v) , (3.4a)
S(v) = 4n[ f dvy 03,0 3092 — 9, ) — f0) j doy oo Zf(0r) | (3.40)

where Q, Q, indicates the average over the solid angles Q and Q,. Note that the effect of the gravitational potential [entering B(r) in
eq. (2.5a) is taken account in the left-hand side of equation (3.4a) through the substitution (3.3).
First, we focus on the kernel of the collisional term. We adopt the following expression for the cross section (Saslaw 1985):

G 1/3
= nR,Z,,[1 + %’"ﬁ] with R, = rq<%€) , (3.5)

m “rel

where r, is the radius of the galaxies (taken to be the same size) and v, is the velocity dlspersmn of stars inside the galaxies; R,, is then
the dlstance at closest approach. The cross section is the sum of a geometrlcal term ~nr? and a term describing the focusing eﬁect of
gravity.
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FiG. 1.—Effect of the collision term only [the expression S(7) in eq. (3.7)] on the galaxy velocity distribution. For increasing time, the distribution tends to shift
toward smaller velocities.

Note that the total number of galaxies in a cluster is
N, = dnngr? f dx x2q(x) = dnanyr3 ;

the product n, v,,, X characterizing the amplitude of the collisional term then takes the following form

Urel 2:(vrel) = <§>A(G)K(5rel) > (3.63)
Afo) = % <;¢)z(v}‘>2/3 , (3.6b)

K@) = ﬁ,,l[l L (ﬂ)m] : (3.60)

rel \O

where 7., = v,,/0. Note that the collisional term is now expressed as a product of the dimensional factor o/r, (the same appearing in
the noncollisional term in eq. [3.4]) times an adimensional amplitude (not depending on velocity) times an adimensional kernel K
which contains the dependence on velocities through the adimensional quantity ,,; = v,.)/0.

Thus, we can finally write equation (3.4) in a compact and adimensional form:

L0 _ 40150~ 0o, 67)
00 = o) + 222, (3.70)

5@) = 47rU ds, 51K (B, 52)f(5,)1(52) — 1) Jdﬁl 5 (5K (5, 51)]ﬁ , (3.7¢)
881
where © = t(o/ar,) is an adimensional time and ¥ = v/o, #, = v,/0, and ¥, = |v/2 — v, |/o are adimensional velocities. Let us discuss
equation (3.7a). The changes in the velocity distribution result from a balance of two terms: the collisions, expressed by yA(a)S(D),
and the response to the gravitational field, expressed by 7Q(?).
The collisions tend to modify the galaxy velocity distribution, stretching the initial Maxwell distribution toward smaller velocities
(see Fig. 1), thus giving a smaller B. The effectiveness of such stretching depends only on yA(o). A(s) depends on the environment in
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FiG. 2—1llustration of the effect of the Boltzmann term Q(f) (see eq. [3.7]) represeniing the effect of the cluster potential. The initial Maxwell distribution (solid
line in all panels) is perturbed at t = 0 (dotted line in top right panel). The velocity distributions at subsequent times (dotted lines) show that the system in absence of
collisions tends to return to the equilibrium Maxwell distribution.

which merging takes place: the smaller o (i.e., the poorer the galaxy cluster), the larger the effect. Also, decreasing the cluster size (i.c.,
r.) gives larger A(c) (see eq. [3.6b]).

The stretching of f(v) due to aggregations is counteracted by the term Q(9) of equation (3.7). This, at each time step dz, tends to
bring f(v) back to the equilibrium Maxwell distribution (see Fig. 2), due to the effect of the gravitational potential.

The delicate balancing between the two terms is governed by the coefficients «, 1, and y [derived from the integration of the spatial
distribution g(x) of galaxies in the cluster; see egs. (2.3) and (2.4) and below] and by the collisional amplitude A(¢) which depends on
the galactic and cluster parameters.

The timescale of this process is given by ar,/c, which defines the adimensional time . For a King distribution, r, is of the order of
one-eighth the cluster virial radius R, and & ~ 1, so that 7 is the time in units of approximately t,/8, wheret, = 1/(2nGp)'/* ~ R /o is
the cluster dynamical time (p is the average cluster density).

4. NUMERICAL SOLUTIONS

We solve the adimensional integrodifferential equation (3.7) by numerical integration. The procedure is the following: We start at
T = 14 With f,(v, 7o) = 0(eq. [3.1]), so that initially Q() = 0, and solve equation (3.7) for f,(v, 7o + A7) = [yA(0)S(?) — nQ(?)]Az. Then
we substitute into equation (3.1) to get f(v, 7, + At). These functions are inserted back into the complete equation (3.7), and the
whole procedure is iterated.

The averages over the angular coordinates Q and Q, (which enter in the computation of ., and ¥, from any given # and #,) are
performed by Monte Carlo integration with ~ 10° extractions. The integral over #, is calculated over discrete sums with a step
AP, ~ 107, The time integration is performed with a step At = 10~ ( ~ 1/100 of the dynamical time ).

To evaluate the coefficients a, #7, and y, we use a King profile for the space density g(x) = (1 + x?)~ 32 The detailed shape of g(x) is
not crucial because only integrals of g(x) are important here. We obtain « = 1.125,n = — 1.3, and y = 0.2 when the integrations over
x are performed up to X, = "max/T. = 4, corresponding to a cluster region where the isothermal approximation is valid.

The collisional anilplitude A(o) depends on the galactic and cluster parameters. The former are set to the typical valuesr, = 50 kpc
andv, =250kms™".

The dependence of the amplitude of the collisional term on the cluster parameters is A(6) oc N, r; >0~ /3. Observed correlations
give N,,, oc 622 (Bahcall 1981) and r2 o 62, so that the product N, r. 2 is on average almost a constant. Thus, in the following we
will use N,,, = 103 (for the Coma Cluster, Godwin & Peach 1977 measured magnitudes of 923 galaxies) and r, = 250 kpc (Bahcall
1975) and keep only ¢ as a variable describing the cluster. However, for a given o, a scatter will exist around the results. We expect
clusters with large galaxy density and small core radius to have larger collisional amplitudes and hence smaller values of B.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System



.431F

.449.

1995ApJ. .

L]
|

436 FUSCO-FEMIANO & MENCI Vol. 449

With the above coefficients determined, we solve equation (3.7). In Figure 3, we show the evolution of the velocity distribution
with time, for a Coma-like cluster with one-dimensional dark matter velocity dispersion o, = ¢/(3)!/> = 1100 km s~ ! (corresponding
to a gas temperature kT = um,0? ~ 8 keV characteristic of the Coma Cluster; Hughes & Tanaka 1992). The collisional term,
tending to stretch the distribution toward small velocities, is not completely balanced by the phase-space diffusion [the term Q(7) in
eq. (3.7)]. As a net result, the average square velocity shifts to smaller values. From the velocity distribution we compute f§ from the
relationship

2
=22~ () = n f f@ds (1)

o

with the normalization {(7),_, = 1.

In Figure 4, the resulting B is plotted as a function of time. After ~1.5 t,, it tends to an asymptotic value of x0.65, which
characterizes a final stable state.

The dependence of the asymptotic § on the cluster velocity dispersion is shown in Figure S and is inverse, as expected. Thus, the
observed anticorrelation between B and ¢ is naturally explained in this model. The three curves in Figure 5 refer to different
combinations of cluster and galactic parameters to be inserted in equation (3.6b). Note that, for example, increasing the cluster size
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v

FiG. 3—Time evolution of the galaxy velocity distribution following the complete eq. (3.7). The dotted line corresponds to ¢ = 0, dashed line to-t = 0.8 ¢,, and
solid linetoz = 1.5¢,.
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FIiG. 4—Ratio {v?)/o* = B as a function of time. The parameters used in the computation are given in the text. The dark matter one-dimensional velocity
dispersion is g, = a/\/g = 1100 km s~ *. Note the asymptote for ¢t > 1.5¢,.
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F1G. 5—Dependency of § on the dark matter one-dimensional velocity dispersion g, = a/\/g for three different combinations of galaxy and cluster parameters;
see eq. (3.6b). The solid line corresponds to Ny, = 1000, r, = 50 h3g' kpc, v, = 250 km s~ 1 andr, = 250 5 kpc, which yield A() = 3.5(c/1000 km s~ ')~ . The
other curves correspond to changes in the parameters so as to give A(0) = 2.5(c/1000 km s~ !)~?/* (dashed line) and A(s) = 4.5(0/1000 km s 1)~ 23 (dotted line).

r, decreases the collisional amplitude (according to eq. [3.6b]) and yields a larger value of B, as expected. A similar correlation of #
with the core radius r, is actually observed (see Jones & Forman 1984).

5. DISCUSSION AND CONCLUSIONS

We studied the effect of galaxy aggregations in clusters on the velocity distribution. Starting from an initial Maxwell distribution
characterized by a galaxy velocity dispersion equal to that of the dark matter, we solved the complete Boltzmann-Liouville
equation, finding an asymptotic final distribution characterized by a smaller galaxy velocity dispersion. This form of velocity
cooling is due to orbital energy transfer to internal energy occurring in galaxy merging, not completely balanced by the response to
the cluster gravitational potential. If the intracluster gas is in equilibrium with the cluster potential, then our results imply that § (the
ratio of the energy per unit mass in galaxies to that in gas) is 0.5-0.7.

The computation we present is based on the following assumptions:

1. The cluster galaxies are all assumed to have the same size, 50 kpc, and internal velocity dispersion, v, = 250 km s~ *. The effect
of the inclusion of a nonuniform mass distribution has been evaluated by Monte Carlo simulations of aggregation processes in the
simplified case of constant cluster potential. A very small dependence of the resulting galaxy velocity distribution on the initial
galaxy mass function has been found.

2. The initial condition from which we compute the effect of aggregations is taken to be the relaxed, virialized state following
violent relaxation (Lynden-Bell 1967). Hence, the present computation does not apply to clusters showing evident substructures,
such as Perseus and A2147, which in fact have an observed f > 1.

3. The galaxy velocity distribution is assumed isotropic and independent of position, and the galaxy space distribution is
assumed to be isotropic at all times. These assumptions are realistic because aggregation processes do not sensibly distort the spatial
distribution starting from the initial conditions described above (Menci, Colafrancesco, & Biferale 1993).

Our results are robust with respect to the galaxy density profile g(x) used in the computation. In fact, it enters into the
computation only in integral forms (through the coefficients a, 1, and ), which are not very sensitive to the details of the shape of
q(x).

The dependencies shown in Figures 3,4, and 5 are in good agreement with existing observations. The existence of an asymptote in
the time evolution of B (Fig. 4) indicates the existence of a final stable state determined by the complete dynamics. This state is
characterized by a velocity distribution whose shape is indistinguishable from a Maxwellian (see Fig. 3) but is characterized by a
galaxy velocity dispersion {v*>)»'/> smaller than the dark matter o.

The asymptotic value of (v?»"/? is in good agreement with observed f. The curve shown in Figure 4 is obtained using the
parameters characteristic of Coma-like clusters: Ny, = 103, r, = 250 hs4' kpc, and o, (the one-dimensional dark matter velocity
dispersion) equal to 1100 km s~!. We obtain an asymptotic f ~ 0.65 in good agreement with the accurately observed value
B = 0.6473:93 (Fusco-Femiano & Hughes 1994) for the Coma Cluster. This is also in rough agreement with the value B,.. =
0.77%3:3} (Edge & Stewart 1991). However, for very unrelaxed clusters, the observed B, is particularly affected by substructures
and inhomogeneities, so that the comparison of B, with our results (obtained under the assumption of cluster relaxation and
isotropy) is critical.

Also, the predicted dependence of § on the cluster dark matter velocity dispersion ¢ (see Fig. 5) is consistent with the decrease of
the average f with o, from the value of 0.64 for rich clusters (Jones & Forman 1984) to 0.41 for groups (Kriss et al. 1983) determined
from fits to the surface brightness data. A similar tendency has also been observed from spectroscopic measures of f (Edge &
Stewart 1991). Our model also predicts a correlation of r, with B (see Fig. 5), which is actually observed (Jones & Forman 1984).
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The value of velocity bias we find is consistent with b, &~ 0.7-0.8 found in clusters from N-body simulations (Carlberg & Dubinski
1991; Evrard et al. 1992; Katz & White 1993; Carlberg 1994; Metzler & Evrard 1994), which constitute so far the only direct
evidence for a velocity bias, apart from the X-ray observations.

One implication of b, < 1 is that estimating the mass of clusters of galaxies from the galaxy velocity dispersions may lead to an
underestimate of the cluster mass, a possibility that can be tested by weak gravitational lensing techniques (see Fahlman et al. 1995).
This effect, in turn, could imply that the value of the density parameter Q, measured from cluster virial masses is underestimated
(Carlberg 1994).

A final implication specific to our model is that, if the energy is transferred from the galaxy orbital motion to internal degrees of
freedom, star formation should be triggered by merging (see Lacey & Silk 1991; Broadhurst, Ellis, & Glazebrook 1992) and galaxies
should become bluer as the merging activity increases. But the latter effect is larger for denser clusters, which in turn form at earlier
epochs, so that a blueing of galaxies with redshift should be found (Cavaliere & Menci 1993). This is actually observed (Butcher &
Oemler 1984). Thus, velocity bias, f < 1, and the Butcher-Oemler effect could be different observational aspects of a unique process.
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