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ABSTRACT

We investigate how the hierarchical merging of dark matter halos, the radiative cooling of baryons, and the
energy feedback from supernovae and active galactic nuclei or quasars combine to govern the amount and the
thermal state of the hot plasma pervading groups and clusters of galaxies. We show that, by itself, supernova
preheating of the external gas flowing into clusters falls short of explaining the observed X-ray scaling relations of
the plasma luminosity LX or the plasma entropy K versus the X-ray temperature T. To account for the scaling laws
from rich to poor clusters takes preheating enhanced by the energy input from active galactic nuclei. In groups, on
the other hand, the internal impacts of powerful quasars going off in member galaxies can blow some plasma out of
the structure. So they depress LX and raise K to the observed average levels; meanwhile, the sporadic nature of
such impulsive events generates the intrinsic component of the wide scatter apparent in the data. The same quasar
feedback gives rise in groups to entropy profiles as steep as observed, a feature hard to explain with simple
preheating schemes. Finally, we argue a close connection of the LX-T or the K-T relation with theM!-! correlation
between the host velocity dispersion and the masses of the black holes, relics of the quasar activity.

Subject headinggs: galaxies: clusters: general — quasars: general — X-rays: galaxies: clusters

1. INTRODUCTION

The hot medium pervading many single galaxies and most
groups and clusters shines in X rays by thermal bremsstrahlung
and line emission (see Sarazin 1988). Simple conditions are
found to prevail in rich clusters.

These emit huge powers, LX / n2
ffiffiffiffi
T

p
R3 " 1044 1045 ergs

s#1, in X rays; the temperatures kT $ 5 keV, measured from
the continuum and from high excitation lines, are close to the
virial values, kTv $ GMmp=10R, in the gravitational wells
mainly provided by dark matter (DM) masses M $ 1015 M%
within sizes R of a few Mpc.1 The inferred gas number den-
sities decline outward from central values n $ 10#3 cm#3; so
this medium with low n and high T satisfying kT=e2n1=3 " 1012

constitutes the best ion-electron plasma in the universe ever,
the intracluster plasma (ICP).

Such a medium is apparently simple on the following ac-
counts. Microscopically, it is constituted by pointlike particles
in thermal equilibrium. At the macroscopic end, the overall
baryonic fractions resulting from the ICP densities and radial
distributions inventoried in many clusters (White et al. 1993;
Allen & Fabian 1994) come to values m=M $ 0:16; this is
close to the cosmic ratio !b=!M of baryons to DM obtained in
the current concordance cosmology from the parameters !b $
0:044 and !M $ 0:23 (see Bennett et al. 2003).2 In addition,
the chemical composition is reasonably constant from clus-
ter to cluster, and close to one-third of the solar value (see
Matteucci 2003).

However, surprises arise in moving from rich clusters to-
ward poor groups. In fact, similarly simple conditions holding

in the intragroup plasma (IGP) would imply that the lumi-
nosities retain the gravitational scaling LX / T 2 (Kaiser 1986).
This would apply if the IGP passively followed the DM evo-
lution and retained the key cluster behaviors: m=M $ const,
i.e., densities n proportional to the DM mass density ", and
temperatures T close to the virial value Tv / M=R / M 2=3"1=3.
Instead, the luminosities recently detected or revised (Horner

2001; O’Sullivan et al. 2003; Osmond & Ponman 2004) are
lower by factors of 10#1 to 10#2; see Figure 1. The figure also
shows how the emissions from poor groups and large galaxies
scatter widely and often downward, a feature of a largely in-
trinsic nature (Mushotzky 2004).
So in such smaller structures the plasma is surprisingly

underluminous and hence underdense. This is an even more
surprising result, considering that in the standard hierarchical
cosmogony (see Peebles 1993) such earlier condensations
ought to be denser, if anything. Moreover, for kT < 2 keV
the pinch of highly excited metals contributes important line
emissions that imply a flatter LX / T, if anything. How the
observed steep decrease may come about constitutes a widely
debated issue.
Our proposal centers on the energy gained or lost by the

baryons through several processes: the gravitational heating
driven by the merging events that punctuate the hierarchical
growth of DM condensations (‘‘halos’’; see Peebles 1993); the
radiative cooling of the baryons; and the energy fed back to
baryons when they partly condense within galaxies into mas-
sive stars then exploding as Type II supernovae (SNe), or ac-
crete onto a central supermassive black hole (BH) energizing
an active galactic nucleus (AGN) or a quasar.
This paper is organized as follows. In x 2 we use a telling

quantity, the plasma entropy, to show that energy feedback
from astrophysical sources is needed to explain its high levels
in poor clusters and groups. In x 3 we show that preheating
by SNe alone is not enough. In x 4 we consider preheating

1 Throughout the paper k is the Boltzmann constant, G is the gravitational
constant, mp is the proton mass, and e is the electron charge.

2 This will be used throughout the paper, with its additional parameters
!" $ 0:73 for the dark energy density and H0 $ 70 h70 km s#1 Mpc#1 for
the Hubble constant.
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enhanced by AGNs, compute the resulting X-ray scaling rela-
tions, and critically discuss the outcomes of this approach. In x 5
we also consider the internal impacts from quasars; we compute
their effect on the X-ray scaling relations and on the entropy
profiles in groups and show how these solve the shortcomings
of all external preheating scenarios. In x 6 we highlight and
discuss the main features of our comprehensive approach.

Auxiliary computations and derivations are given in the
Appendices. In Appendix Awe derive equation (2) of the main
text from the hydrostatic equilibrium and give handy approx-
imations. In Appendix B we reformulate the classic Rankine-
Hugoniot jump conditions in a general form that is also valid
for accretion shocks / layers and derive equations (5) and (6) of
the main text. In Appendix C we develop a new family of self-
similar hydrodynamic solutions describing the blast waves
driven by the internal impacts of quasars and extensively used
in x 5.

2. X-RAY LUMINOSITY AND ENTROPY

This paper deals with the energy budget of the baryons. The
latter experience gravitational heating to T $ Tv (discussed in
detail in x 4) as they fall into the hierarchically growing DM
structures. Nongravitational energy losses or inputs deplete the
baryon density; this is because losses trigger baryon conden-
sation to stars, while inputs cause outflow from and hinder
inflow into newly forming structures.

All such processes are probed with the adiabatK & kTn#2=3 /
e2s=3k , a direct measure of the specific entropy s (see Bower
1997; Balogh et al. 1999). The levels of the adiabat K are linked
to LX by the inverse relation

K / L
#1=3
X T 5=3; ð1Þ

which obtains at z $ 0 on eliminating n between their re-
spective expressions; note that T5=3 goes over to T4=3 for im-
portant line emission, and that we are neglecting the weakly
T-dependent shape factors for K and L

1=3
X .

Clearly, K stays constant under adiabatic transformations
of the plasma. Gravitational heating would set the scaling
K / T (corresponding to LX / T 2 after eq. [1]), but Figure 2
shows the data for decreasing T to deviate substantially upward;
this indicates that additional nongravitational processes occurred
during a structure’s merging history. The present paper inves-
tigates how these processes affect the adiabat K ¼ K2#(r),
namely, the level K2 at the virial radius r ¼ R and the inner pro-
file #(r).

The relation of these quantities to the density run n(r) of
the plasma in hydrostatic equilibrium is derived in Appendix A
and reads

n(r)

n2
¼ ##3=5(r) 1þ 2

5
$

Z R

r

dr 0
d%

dr 0
##3=5(r 0)

" #3=2
; ð2Þ

the boundary condition at r ¼ R is given by n2 ¼ (kT2=K2)
3=2,

butK2 will be related to T2 in x 4. The parameter $ ¼ Tv=T2 is the
ratio of the DM to the thermal plasma scale height in the grav-
itational potential %(r); the latter is normalized to the one-
dimensional dispersion!2 & kTv=&mp, with&$ 0:6 for the nearly
cosmic composition of the plasma (Cavaliere & Fusco-Femiano
1976). For a polytropic entropy distribution#(r) / n(r)##5=3 with
uniform index #& 5=3þ d ln #=d ln n, equation (2) yields the
familiar form n ¼ n2½1þ (##1)$$%=#,1=ð##1Þ in terms of the
potential drop $% inward of R; the isothermal limit n ¼ n2e

$$%

for # ¼ 1 provides the standard model to fit the X-ray surface
brightness profiles, which yields values $ $ 0:7 in rich clus-
ters. In particular, we use equation (2) to compute integrated

Fig. 1.—Integrated X-ray luminosity LX vs. X-ray temperature T. Data for
clusters (crosses) are from Horner (2001), for groups (circles) from Osmond &
Ponman (2004), and for early-type galaxies (stars) from O’Sullivan et al.
(2003). The dotted line represents the gravitational scaling, with line emission
included. The strip (with 2 ! width provided by the merging histories) illus-
trates our results for SN preheating with k$T ¼ 1

4 keV per particle, as dis-
cussed in x 3.

Fig. 2.—Central entropy K0:1 (at r $ 0:1R) vs. X-ray temperature T. Data
for clusters and groups are from Ponman et al. (2003): Circles mark individual
systems, and squares refer to binned data. The dotted line represents pure
gravitational heating. The strip (with 2 ! width provided by the merging his-
tories) illustrates our results for SN preheating with k$T ¼ 1

4 keV per particle,
as discussed in x 3.
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luminosities LX /
R
dr r2n2(r)T 1=2(r) and central entropiesK0:1

at r ¼ 0:1R, which we compare with the data.
Throughout the paper we will make use of ‘‘semianalytic’’

techniques. This is because the nongravitational processes af-
fecting K include energy inputs and radiative losses, which
interplay in complex patterns with gravitational heating; so
even numerical simulations based on advanced N-body and hy-
drocodes are driven to, or beyond, their present limits and have
to borrow from semianalytic models much subgrid physics (see
discussion by Borgani et al. 2002).

Concerning radiative losses, they do operate within galaxies
to remove low-entropy gas by condensing it into stars, a process
that we include in our semianalytic modeling. But extensive
cooling as needed to substantially raise the residual ICP/IGP
entropy or depress LX would produce too many unseen stars
(see Voit & Bryan 2001; Sanderson & Ponman 2003). On the
other hand, cooling triggers catastrophic instabilities unless
closely restrained by other processes feeding energy back to
baryons (see Blanchard et al. 1992); so energy additions$E >
0 are mandatory anyway and will constitute our focus next.

3. THE NEED FOR AGN FEEDBACK

Obvious energy sources are provided by Type II SN ex-
plosions; do they contribute enough energy feedback? SNe
provide energies ESN $ 1051 ergs with an occurrence 'SN P 5 ;
10#3 per solar mass condensed into stars, the latter value being
calibrated so as to include the yield of strong winds from young
hot stars (Bressan et al. 1994).

Such outputs may be coupled to the surrounding gas at
levels fSN P 1

2 when cooperative SN remnant propagation takes
place, as in the case of starbursts, to drive subsonic galactic
winds (see Matteucci 2003). Then the integrated thermal input
attains the maximal level (Cavaliere et al. 2002),

k$T ¼
2 &mp

3
fSNESN'SN

m-

m
P

1

4
keV particle#1; ð3Þ

in groups with stellar to gas mass ratios up to m-=m $ 1
2 (see

David 1997); somewhat smaller values obtain in clusters (e.g.,
Lin et al. 2003).

The SN feedback and the originating star formation are de-
scribed by semianalytic models, in particular that of Menci &
Cavaliere (2000). They base their model on the DM merging
histories, i.e., the hierarchical buildup of a galaxy or a group
with their baryonic contents through merging events with com-
parable or smaller partners, down to nearly smooth inflow (Lacey
& Cole 1993). The model, in addition, specifies how the baryons
are cycled between the cool, stellar, and hot phases; the latter
contributes to the ICP/ IGP, while the former two phases yield
the stellar observables .

It is found that most of a structure’s DM mass M (and of the
IGP mass likewise) is contributed to its main progenitor by
merging partners with masses M 0PM=3 and related virial
temperatures T 0

v P 0:6Tv (Cavaliere et al. 1999). The smaller
lumps have shallower gravitational wells and produce more
star-related energy on scales closer to their dynamical times;
so they are more effective in heating up their gas share to
temperatures T 0

v þ$T . During each subsequent step of the
hierarchy forming larger groups or clusters, the externally pre-
heated gas (see Muanwong et al. 2002) will be hindered from
flowing in and contributing to the IGP or ICP. So under any
model depleted densities will be propagated some steps up the
hierarchy.

In sum, SNe make optimal use of their energy in preheating
the IGP. However, their input k$T $ 1

4 keV per particle turns
out to cause only limited luminosity depressions or entropy
enhancements, as shown by the light strips in Figures 1 and 2.
The result may be understood by referring to the simple iso-
thermal case where LX / n22

R
dr r2e2$$% applies; in moving

from rich to poor clusters n decreases, governed mainly by
the decreasing exponential e2$$% (as visualized by Fig. 5 of
Cavaliere & Lapi 2005). But the normalized DM potential $%
deepens because of the increased concentration (an intrinsic
feature discussed in Appendix A). To offset this trend and to
provide constant or decreasing density, it is clearly required
that $ $ Tv=(Tv þ$T ) be lowered from the cluster value by a
sufficiently strong preheating $T ; in particular, the approxi-
mation $ $ 0:7#$T=T holds; see Appendix B and specifically
equation (B9) with ( ¼ T=$T . Numerically, the requirement
comes to k$T > 0:5 keV per particle for any significant lu-
minosity depression in a poor cluster; yet more preheating is re-
quired with polytropic plasma distributions. On the other hand,
including Type Ia SNe still does not meet the above require-
ment (see Pipino et al. 2002).
In view of these SN limitations, in the rest of the paper

we concentrate on the stronger feedback provided by quasars
and AGNs (see Valageas & Silk 1999; Wu et al. 2000; Yamada
& Fujita 2001; Nath & Roychowdhury 2002). These sources
are kindled when sizeable amounts of galactic gas, triggered by
mergers or interactions of the host with companion galaxies,
are funneled downward from kiloparsec scales; they not only
form circumnuclear starbursts but eventually trickle farther
down to the very nucleus (see Menci et al. 2004) and accrete
onto a central supermassive BH.

4. EXTERNAL PREHEATING FROM AGNs

On accreting the BH massM!, the integrated energy input to
the surrounding plasma comes to values of

k$T ¼
2&mp

3
f 'c2

M!

4Mb

m-

m
$ 1

2
keV particle#1; ð4Þ

easily larger than for SNe. We have used the standard mass-
energy conversion efficiency ' $ 10#1 and the locally ob-
served ratio M!=Mb $ 2 ; 10#3 of BH to galactic bulge masses
(Merritt & Ferrarese 2001); the factor 1

4 accounts for the bulge
mass observed in blue light compared to that integrated over the
star formation history (Fabian 2004a). Finally, we will adopt
values f $ 5 ; 10#2 for the fractional AGN output actually
coupled to the surrounding gas, on the grounds discussed next.
The 10% radio-loud AGNs directly produce considerable

kinetic or thermal energies in the form of bubbles and jets (see
Forman et al. 2004), but statistics and nonspherical geometry
reduce their average contribution to f. On the other hand, in the
90% radio-quiet AGNs a small coupling is expected for the
radiative output because of the flat spectrum and low photon
momenta; the observations of wind speeds up to vw $ 0:4c
suggest values around vw=2c $ 10#1 associated with covering
factors of order 10#1 (see Chartas et al. 2003; Pounds et al.
2003). We see that average values around f $ 5 ; 10#2 are
consistent not only with the X-ray observations of the IGP,
but also with the mainly optical observations of the relic BHs
in galaxies.
Considering that the AGN activity closely parallels the star

formation in spheroids (Franceschini et al. 1999; Granato et al.
2004; Umemura 2004), we add the AGN energy injections to
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SNe to obtain preheating energies up to k$T $ 3
4 keV per

particle. Such a combined value produces a sizeable step to-
ward the locus of the data, as shown in Figures 3 and 4 by the
heavy strips. How we obtain these is explained next.

Toward this purpose it is convenient to discuss further the
modus operandi of the external preheating. During the for-
mation of a DM structure, outer lumps and the associated gas
flow in together; but just inside R the smaller and/or less bound
gas bunches are promptly stripped away from their DM hosts,
while gaining entropy (Tormen et al. 2004; see their Fig. 8).
The outcome constitutes a complex patchwork of shocks of
all sizes, comprised within an outer layer with thickness )P
10#1R wherein most of the entropy rise takes place.

The net result is close to that computed from considering
a coherent accretion shock, roughly spherical and located at
r $ R as considered by Cavaliere et al. (1999), Dos Santos &
Doré (2002), and Voit et al. (2003). In fact, across the layer we
may retrace the classic Rankine-Hugoniot derivation based on
the conservation of mass, momentum, and energy for plasma
particles with 3 degrees of freedom; for a reasonably thin layer
we recover the standard entropy jump across a shock,

K2 ¼ K1(
5=3 2 (# 1ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 (# 1ð Þ2þ(

q" ##2=3

; ð5Þ

to within O()=R) accuracy, independently of geometric details
(as discussed in Appendix B). To within the same accuracy, the
strength parameter ( & T2=T1, i.e., the ratio of the down- to the
upstream temperature, is linked by

( ¼ 5M2

16
þ 7

8
# 3

16M2
ð6Þ

to the Mach number M ¼ (3&mpṽ21=5kT1)
1=2 of the flow ve-

locity ṽ1 relative to the shock/ layer. Henceforth we refer to
‘‘shocks,’’ but we also include thin layers.

We now consider in closer detail the combined preheating by
SNe and AGNs; this comes into play through T1 ¼ T 0

v þ$T
that enters K1 and ( in equations (5) and (6). We average K2 over
the full structure’s merging history that includes the distri-
butions of progenitor masses M 0 or related T 0

v ; to this purpose
we implement, as in Cavaliere et al. (1999), the conditional prob-
abilities and the merging rates from the standard cold DM cos-
mogony as given by Lacey & Cole (1993). This straightforward
if laborious procedure (which is dominated by the smaller part-
ners and so further validates eqs. [5] and [6], as discussed in
Appendix B) is made semianalytically and yields the heavy strips
in Figures 3 and 4. Their width illustrates the variance (at 95%
probability level) around the mean value, induced mainly by the
merging stochasticity; the smooth, low-power AGN activity
considered here does not contribute much additional scatter.

Next we discuss why the results fit clusters better than groups.
In very rich clusters the infall velocities v1 $ 2:1(kTv=&mp)1=2

are large, and ṽ1 ’ 4v1=3 is larger yet (see Appendix B). These
velocities are dominantly supersonic, except for the few major
lumps that carry warm gas deep into the structure (as observed by
Mazzotta et al. 2002) and contribute little to prompt entropy
gains. So the effective shocks are uniformly strong with ( ’
&mpv21=3kT1 31; see equation (B7). Such conditions in equa-
tion (5) yield K2=K1 ’ (=42=3, corresponding to nearly constant
n2=n1 $ 4 (eq. [B7]); they also yield a nearly constant value of
$ ¼ Tv=(T1 ’ 3kTv=&mpv21 $ 2

3. In other words, here we find
pure gravitational heating at work to enforceK / T or LX / T 2.

The related, raising entropy profiles reflect the history of
progressive depositions of shells undergoing stronger and

Fig. 3.—Integrated X-ray luminosity LX vs. X-ray temperature T. Data:
Dotted line and light shaded strip are the same as in Fig. 1. The heavy shaded
strip (with 2 !width provided by the merging histories) illustrates our results for
external preheating when including the AGN contribution to a total k$T ¼
3
4 keV per particle, as discussed in x 4. Our results for the internal impacts from
quasars are illustrated by the solid (ejection model ) and dashed (outflowmodel )
lines; see x 5 for details. The coupling level of the quasar output to the ambient
medium is f ¼ 5 ; 10#2.

Fig. 4.—Central entropy K0:1 vs. X-ray temperature T. Data: Dotted line and
light shaded strip are the same as in Fig. 2. The heavy shaded strip (with 2 !
width provided by the merging histories) illustrates our results for external
preheating when including the AGN contribution to a total k$T ¼ 3

4 keV per
particle, as discussed in x 4. Our results for the internal impacts from quasars
are illustrated by the solid (ejection model) and dashed (outflow model) lines;
see x 5 for details. As before, the coupling level is f ¼ 5 ; 10#2.
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stronger shocks during the hierarchical growth to a rich cluster;
in fact, in the outer regions we find # / r1:1 and # $ 1:1. We
derive these values by reducing to bare bones the model of
Tozzi & Norman (2001). We adopt in full the concordance
cosmology and nearly self-similar hierarchical collapse with a
constant perturbation power index around#1.2 appropriate for
rich clusters (see Padmanabhan 2003); these conditions imply
the last accreted shell to add a mass $M / M on top of the
massM / (1þ z)#3:2 virialized at zk 1

2 (see also Lapi 2004). In
the process, the entropy K / T=n2=3 grows because the strong
shocks prevailing in rich clusters yield not only T $ Tv and
n2 ’ 4n1 as above, but also n1 / " / (1þ z)2:9 considering the
appropriate collapse threshold; in terms of m / M this trans-
lates into # / m2=3(1þ z)#1 / m.

For the ICP in equilibrium, the radial entropy profile #(r)
corresponding to this distribution #(m) is found as follows. In
the outskirts we approximate the entropy profile as #(r) / r* ,
with * to be determined; then equation (A3) implies n(r) /
r#3ð*þ2Þ=5, and we obtain #(r) / m( < r)5*=3ð3#*Þ on consid-
ering that m(< r) ¼ 4+mp

R
r dx x2n(x) holds. Requiring con-

sistency with the entropy distribution # / m derived above, we
obtain * $ 1:1. So our final results read #(r) / r1:1 and n(r) /
r#1:9, which accord with the data by Ponman et al. (2003) and
with the simulations by Tornatore et al. (2003); the related
value # $ 1:1 agrees with that observed by Ettori & Fabian
(1999) and De Grandi & Molendi (2002).

In poor clusters, on the other hand, the infall is slower, with
ṽ1 ’ 4v1=3þ 5kT1=4&mpv1; see Appendix B. Now the inflow is
less supersonic, and the accretion shocks are easily modulated
by the preheating temperature to a strength ( ’ &mpv21=3kT1þ
3=2; see equation (B8). Less entropy is produced by these in-
termediate shocks, while an additional contribution is just car-
ried in with the warm inflowing gas, to yield K2=K1 ’ (( þ
5=8)=42=3; correspondingly, the boundary densities are lowered
to n2=n1 ’ 4 15=4( (eq. [B8]). In addition, the density pro-
files are now just flatter than in rich clusters, since n(r)=n2 is
appreciably decreased with preheating levels k$T $ 3

4 keV per
particle that satisfy the condition derived at the end of x 3;
these are effective in lowering all densities and hence in de-
pressing LX and enhancing K.

In groups and galaxies these preheating levels are enough to
cause smoother, transonic inflows and weak shocks with ( ’ 1,
yielding small jumps K2=K1 ’ 1þ 5((# 1)3=6 and n2=n1 ’ 1;
see equation (B10). The X-ray scaling relations produced by
the combined external preheating of SNe and AGNs (Figs. 3
and 4, heavy strips) are in marginal agreement with the trends
in the data, while the wide scatter is still unaccounted for.
Moreover, the weak shocks so produced would imply nearly
flat profiles #(r), which often are not observed (Pratt & Arnaud
2003; Rasmussen & Ponman 2004).

The problem with such isentropic profiles would be aggra-
vated and propagated to poor clusters, while the entropy would
be raised too much, if one tuned high the AGN preheating,
much above the level 12 keV per particle given by equation (4).
From the previous relations the problem is easily seen to de-
velop even before solving the luminosity issue in groups.

5. INTERNAL IMPACTS OF QUASARS

But right in groups and galaxies the impulsive inputs by
powerful quasars take over, providing from the inside an ad-
ditional impact on the IGP that can cause outflow or ejection.
For this to occur, two energies compete: the overall input
$E$ 2 ;1062f (M!=109 M%)(1þ z)#3=2 ergs provided by a qua-
sar on accreting the mass M! within the host dynamical time

td $ 108 yr set by mergers or interactions, and the (absolute)
total energy E $ 2 ; 1061(kT=keV)5=2(1þ z)#3=2 ergs residing
in the equilibrium IGP (Lapi et al. 2003).
The relevant ratio,

$E

E
$ 0:5

f

5 ;10#2

M!

109 M%

kT

keV

$ %#5=2

; ð7Þ

is small in clusters but increases toward groups and approaches
unity in poor groups with kT $ 1 keV to attain a few in large
galaxies with kT $ 1

2 keV. Within the central kiloparsec of such
structures the quasar launches a piston (see King 2003; Granato
et al. 2004) that drives through the surrounding plasma a blast
wave bounded by a leading shock at r ¼ Rs (see Fig. 5). These
blasts constitute effective, quasi-isotropic means to propagate
energy far away from the central source.
While the latter shines, the blast affects the plasma out to the

distance Rs where the initial energy E(<Rs) is comparable to the
cumulative input$E(t). In fact, the condition$E(t)=E(<Rs) ¼
const defines the self-similar propagation of the blast and the
motion Rs(t) of the leading shock; as shown in Appendix C, the
result is Rs(t) / t2=! in an initial distribution n(r) / r#! (2 .
! < 2:5) for the plasma density under the energy input$E(t) /
t2ð5#2!Þ=!. The simplest flow obtains with ! ¼ 2 (the standard
isothermal sphere), implying a source power L(t) & d$E=dt ¼
const; when ! > 2 applies the power L(t) / t5ð2#!Þ=! declines, a
useful means to describe the quasar fading because of its own
feedback on the accreting gas.
This new family of hydrodynamic solutions, proposed by

Cavaliere et al. (2002), is described in detail in Appendix C; it
is used below to evaluate mass loss from, and entropy distri-
bution into, the structures. The solutions include the restraints
set to gasdynamics by a nonzero initial pressure p(r) / r2(1#!)

and by the DM gravity; so not only do they imply a well-
defined E(<Rs), but they also cover the full range of blast

Fig. 5.—Outline of the density distribution during the propagation of a
quasar-driven blast throughout the equilibrium plasma. Dashed line: Initial
density run n / r#2 in the volume already evacuated by the blast. Thick solid
line: Perturbed density in the blast (specified in Fig. 6). Thin solid line: Still
unperturbed density. The perturbed flow is confined between the trailing piston
at Rp and the leading shock at Rs; in our illustration, this is still far from the
virial radius R.
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strengths from weak in clusters to strong in galaxies, depending
on the magnitude of the key parameter $E=E.

As $E=E increases, so does the Mach number M of the
leading shock; their relation is shown in Figure 7 and is ap-
proximated byM2 ’ 1þ ($E=E ) for$E=EP 2 in the simple
! ¼ 2 model. Meanwhile, the ratio of the kinetic to the thermal
energy ranges up to 2; see equation (C17). Correspondingly,
within the time td increasing plasma amounts are driven be-
yond the virial radius R of a large galaxy or a poor group; in the
simple ! ¼ 2 model the fractional mass ejected or flowed out is
well approximated by $m=m ’ $E=2E; see also Table 1.

These results turn out to be nearly independent of the spe-
cific mode for mass loss; in particular, we compare two ex-
treme cases. In the first one (‘‘ejection’’), we take$m to be the
mass in the blast driven outside of the virial radius R at t ¼ td
by the blast kinetic energy. In the second case (‘‘outflow’’), we
adopt constant pressure as boundary condition at r ¼ R to
obtain new densities n0 / (T þ$T )#1; now $m is the mass
flowed out of the structure due to the extrathermal energy $T
deposited by the blast. Beyond model details, we find that the
mass loss closely obeys $m=m ’ $E=2E.

In both cases, after the passage of the blast the IGP will
recover hydrostatic equilibrium, described by equation (2). But
all new densities n0 will be depleted by the factor 1#$m=m
below the initial value already affected by the preheating from
SNe and AGNs. In addition, in both cases the extrathermal
energy deposited by the blast lowers the values of $ 0; this is
given in Table 1 and may be understood in terms of $ 0=$ $
T=(T þ$T ). The resulting LX / (1#$m=m)2, including the
appropriate T-dependent shape factor, is shown by the solid
and the dashed lines in Figure 3 for both models, ejection and
outflow, discussed above.

The IGP entropy is increased by quasar-driven blasts. While
these sweep through the plasma, a moderate production takes
place across the leading shock and leads to a jump K2=K1 given
again by the general equations (5) and (6). In the equilibrium
recovered after the plasma mass loss$m=m caused by ejection
or outflow, the entropy is further enhanced to read

K 0
2=K2 ¼ 1#$m=mð Þ#2=3: ð8Þ

For example, in a group with kT ¼ 3
4 keV the combined pre-

heating by SNe and AGNs yields entropy levels corresponding
to 100 keV cm2. This is raised to 180 keV cm2 by the internal
blast driven by a quasar deriving from a BH of 109 M% with
coupling f $ 5 ;10#2 that produces $E=E $ 1. The resulting
central entropy K0:1 including the appropriate T-dependent shape
factor is shown by the solid and dashed lines in Figure 4 for both
models, ejection and outflow, discussed above.

Relatedly, the entropy profiles are steep after the blast pas-
sage. They arise when the entropy produced in the blast, clearly
piled up toward the leading shock, is redistributed in the re-
covered equilibrium. We find

#(m) / m4=3 ð9Þ

to hold in terms of the plasma mass m swept up by the blast
(see Fig. 6 and eq. [C11]). In the adiabatically recovered equi-
librium we require the entropy distribution #0(m) to equal
#(m) / m4=3 and proceed in analogy with the technical steps
used in x 3.

In detail, let us approximate #0 / r* , with * to be deter-
mined; then equation (A3) implies n0 / r#3ð*þ2Þ=5, and thus
#0 / m5*=3ð3#*Þ follows. Requiring this to be consistent with
the entropy distribution # / m4=3 in the blast (as anticipated
above) yields * $ 1:3. In other words, the blast acting from
inside leaves in the readjusted plasma a strong imprint of its
own entropy distribution, in the form of a steep profile #0(r) /
r1:3 consistent with the data.

6. DISCUSSION AND CONCLUSIONS

In this paper we have used pilot semianalytic modeling to
show that the energy fed back to baryons by AGNs and quasars
is essential to fit the recent X-ray data. We find that the AGN
external preheating dominates over SNe to yield the scaling
laws LX / T3 and K / T 2=3 related by equation (1) that con-
stitute fitting trends in clusters if still marginal for groups. But
in groups and in large galaxies the quasar impulsive feedback
acting from the inside takes over, to eject some plasma and
further depress LX, while enhancing K and originating non-
isentropic profiles.

We stress that the energy added by AGNs plays an inverse
role in preheating and in ejection /outflow. This is because in
moving from clusters to groups the ratio $E=E of the added
versus the equilibrium energy is bound to increase. This causes
relatively higher external preheating, warmer inflows, andweaker
accretion shocks; on the other hand, it drives stronger internal
blasts, causing more mass ejection/outflow. In parallel, the lead-
ing shocks of the blasts replace the accretion shocks in the role

TABLE 1

Relevant Blast Wave Quantities (! ¼ 2)

$E=E M hpi=p1 1#$m=m $ 0=$

0.3............................ 1.2 3.6 0.92 0.94

1............................... 1.5 4.6 0.58 0.86

3............................... 1.9 6.3 "0 . . .

Fig. 6.—Distributions of density (top), cumulative mass (middle), and en-
tropy (bottom) within the blast, computed from eqs. (C9) and (C10) for ! ¼ 2
and normalized to their postshock values. Solid lines are for a strong shock
with $E=E ¼ 3, dashed lines are for an intermediate shock with $E=E ¼ 1,
and dotted lines are for a weak shock with $E=E ¼ 0:3.
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of increasing the outer entropy production, thus originating
comparably steep entropy profiles.

Such internal effects, however, are to saturate in galaxies
because the values of$E=E there are limited, lest the impulsive
quasar feedback ejects so much of the surrounding baryons as to
stop the BH accretion altogether (see Silk & Rees 1998); the
saturation is what in our calculation yields the lower elbows of
the solid and dashed lines presented in Figure 3. As argued in
Cavaliere et al. (2002), the system constituted by the BH and the
surrounding baryons self-regulates to the verge of unbinding;
the condition $E $ E directly yields M! $ 5 ; 108 M%( f =5 ;
10#2)#1(!=300 kms#1)5 in terms of the DM velocity dispersion
!. In turn, the latter is found to correlate less than linearly with
the velocity dispersion !- of the host galactic bulge (Ferrarese
2002; Baes et al. 2003; A. Pizzella et al. 2005, in preparation);
so the BH mass approaches M! / !4

-.
Thus for the same value f $ 5 ;10#2 indicated by the av-

erage X-ray data for groups we agree (within the observed
scatter; see Tremaine et al. 2002) with the observations of the
uppermost relic BH masses in the bulges of many local and
currently inactive galaxies. Similar BH masses may be also
contributed by an initial, supercritical accretion phase (as dis-
cussed by King 2003), launching the piston that in turn drives
the far-reaching blasts described above. Subsequently, our out-
going self-similar blasts with$E(t)=E(<Rs) $ const stay tuned
to the condition $E $ E. Specifically, for ! ! 2:5 not only
E(<Rs) / R5#2!

s ! const holds but also $E / t2ð5#2!Þ=! !
const applies, consistent with fading quasar output; thus, at
most, limited increase of BH mass M! takes place.

The empirical fact (see Wandel 2002; Vestergaard 2004) that
a similarM!-! correlation appears to hold also for the currently
active and faraway BHs is consistent with our adoption of
comparable values for M! energizing both modes of nuclear
activity: the impulsive quasar feedback effective for plasma
ejection from groups and galaxies, and the smoother, long-
lived AGN outputs sufficient to preheat the gas falling into
poor clusters. We are also consistent with the rough equality of
the mass densities in BHs derived from the powerful emissions
of the quasars in the optical band (see Marconi et al. 2004) and
from the weaker and later AGN activity detected mainly in
X-rays (Hasinger 2004; Fabian 2004a).

On the other hand, strong and rare (i.e., increasingly spo-
radic) quasar impacts can also explain the scatter of the X-ray
data widening toward smaller systems as poor groups or mas-
sive galaxies (Mushotzky 2004). This we trace back to the in-
creasing variance in the occurrence of strong quasar events
or even in their coupling level f that concur to dynamically

modulate the plasma ejection $m=m / f M! and nonlinearly
affect LX / (1#$m=m)2 when $m=m approaches 1. As the
hierarchical clustering proceeds toward clusters, instead, the
evolution of the quasars cuts down most internal effects; this is
because the impulsive contributions to $E within a structure’s
dynamical time can hardly keep pace with the increase of the
equilibrium energy E / mTv in such late and massive systems
with deep potential wells.
We stress that our upper and lower bounds for LX illus-

trated in Figure 3 by the SN strip and the quasar line comprise
nearly all data points, except for a few groups with peculiar fea-
tures currently under scrutiny (see Mushotzky 2004; Osmond &
Ponman 2004). So we submit that several pieces of data fit to-
gether when considering both the external preheating from AGNs
and the internal impact from quasars, with the same average val-
ues of f M!. We remark that several authors (e.g., Ruszkowski
& Begelman 2002; Fabian 2004b; Zanni et al. 2004) have
argued the relevance of AGN feedback in explaining the puzzle
posed by the ‘‘cool cores’’ (Molendi & Pizzolato 2001) at the
very centers of many clusters. On the other hand, Cavaliere et al.
(2002) and Granato et al. (2004) have stressed that powerful
quasar impacts in massive spheroids easily quench star for-
mation and produce precociously red giant elliptical galaxies.
To conclude, we stress that energy feedback from AGNs and

quasars with an overall coupling around 5 ; 10#2 to the ambient
baryons yields agreement with independent observations in
different frequency bands and over different distance scales.
Specifically, this paper is focused on the extended X-ray emis-
sions and plasma entropy of poor clusters and groups; but
we have also considered at galactic and subgalactic scales the
mainly optical correlation of nuclear BH masses versus host
velocity dispersions. At the intermediate scales of early massive
galaxies and in the microwave/submillimeter band, we have
proposed in Lapi et al. (2003) how to catch quasar impacts in
the act from resolved Sunyaev-Zel’dovich signals enhanced by
overpressure in running blast waves. Such transient events
sweeping plasma outward to lower densities (see Figs. 5 and 6)
hardly increase the extended X-ray emissions; they instead
specifically correlate with pointlike X-rays from a fully active
quasar and/or with strong IR emissions signaling a nascent
quasar enshrouded by dust.

We acknowledge fruitful discussions with G. Tormen, and
the timely and helpful comments by our referee. This work is
partially supported by INAF and MIUR grants.

APPENDIX A

HYDROSTATIC EQUILIBRIUM

The hot plasma constituting the ICP/ IGP pervades the potential wells of clusters and groups, being in overall virial equilibriumwith
the DM. As the sound crossing time is comparable to, or somewhat shorter than, the structure dynamical time, hydrostatic equilibrium
applies; when the thermal pressure p ¼ nkT=& is dominant (see Ricker & Sarazin 2001; Inogamov & Sunyaev 2003), this yields

1

mpn

dp

dr
¼ # d%

dr
; ðA1Þ

in terms of plasma number density n and temperature T. The solution of this differential equation requires one boundary condition,
for example, the value n(R) ¼ n2 at the virial radius r ¼ R; it also requires an equation of state, i.e., a specific relation between n(r)
and T (r).
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As to the DM potential %(r), we adopt the widely used NFW form (Navarro et al. 1997),

%(r) $ #3!2g (c)
ln (1þ r=rs)

r=rs
; ðA2Þ

involving the one-dimensional velocity dispersion ! of the DM and the scale rs & R=c. The concentration parameter c $
5(M=1015 M%)

#0:13 slowly increases (Bullock et al. 2001), and the factor g (c) ¼ ½ ln (1þ c)# c=(1þ c),#1 weakly rises from clusters
to groups. To wit, the smaller, earlier DM halos are more concentrated in terms of the normalized potential % & %=!2, consistent with
the tenets of hierarchical structure formation (see Padmanabhan 2003).

It is useful to recast the hydrostatic equilibrium in terms of the all-important adiabat K ¼ kT=n2=3 to obtain

5

3

d ln n

d ln r
þ d ln K

d ln r
¼ # kTv

Kn2=3
d%

d ln r
; ðA3Þ

recall that kTv ¼ &mp!2 is the virial temperature. The above is a first-order differential equation of the Euler type for n(r); in terms
of K(r), it can be formally integrated by standard methods to obtain equation (2).

In the cluster outskirts, equation (A3) directly relates the slopes of n(r) and K(r), so that n(r) / r#3ð*þ2Þ=5 corresponds to
K(r) / r* . This is easily derived near r $ R, where for the NFW potential d%=d ln r $ 3 holds; meanwhile, the coefficient
Tv=Kn2=3 $ Tv=T2 is easily recognized to be $, with values close to 2

3 for clusters.

APPENDIX B

ACCRETION SHOCKS AND LAYERS

Across any sharp transition such as a shock, the conservation laws of mass, total stress, and energy for a plasma with 3 kinetic
degrees of freedom are written (Landau & Lifshitz 1959)

n1ṽ1 ¼ n2ṽ2;

p1 þ mpn1ṽ
2
1 ¼ p2 þ mpn2ṽ

2
2 ;

1

2
mpn1ṽ

3
1 þ

5

2
p1ṽ1 ¼

1

2
mpn2ṽ

3
2 þ

5

2
p2ṽ2: ðB1Þ

As is customary, we have indicated with the subscripts 1 and 2 the pre- and postshock variables, respectively; in addition, by ṽ we
indicate velocities measured in the shock rest frame.

The previous system of equations leads after some algebra to the temperature jump T2=T1 & ( under the general form

( ¼ 5

16
M2 þ 7

8
# 3

16

1

M2
; ðB2Þ

in terms of the Mach number M & (3&mpṽ21=5kT1)
1=2; this is equation (6) of the main text. It is seen that shock heating (( > 1)

requires the flow to be supersonic in the shock rest frame, i.e., M > 1 as expected. The corresponding density jump reads

n2
n1

¼ 4M2

M2 þ 3
; ðB3Þ

or, in terms of ( (see Cavaliere et al. 1999),

n2
n1

¼ 2 1# 1

(

$ %
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 1# 1

(

$ %2

þ 1

(

s

: ðB4Þ

This may be used to express the postshock adiabat K2 ¼ kT2=n
2=3
2 , which leads to equation (5) of x 4 in the context of accretion

flows. The same general equation also applies to the leading shock of an outgoing blast wave, discussed in x 5.
Focusing now on accretion flows, we consider what happens if the transition occurs across a layer of finite thickness ) located at

r $ R. In such a case, the conservation equations above include additional terms due to volume forces or nonplanar geometry; e.g.,
in the momentum equation the gravitational term

R R

R#) drGM (<r)n(r)=r should be considered. However, these corrections are
O()=R) relative to the term p1 þ mpn1ṽ21 when )=RT1 applies; in particular, we have checked this to hold for any reasonable DM
and gas distributions M (<r) and n(r) inserted in the above integral.

In fact, for the numerous small merging partners with mass ratio M 0=M P 5% the diffuse baryonic component is stripped away
promptly (i.e., within a layer )=RP10%) from its DM counterpart and raised to the final temperature and entropy levels (see Tormen
et al. 2004). These smaller merging partners with cooler T 0

v undergo prompter and also stronger transitions; so they not only are
better described by equations (B2), (B3), and (B4), but also dominate the averaging procedure over the distribution of progenitor
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masses M 0 that are used in the main text to compute the effective value of K2(T ). For all these reasons, we refer to ‘‘shocks’’ but
imply that similar results also hold for thin layers.

It is useful to relate the inflow velocity ṽ1 in the shock rest frame to the infall velocity v1 in the cluster rest frame, to obtain

ṽ1 ¼
2

3
v1 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 15

4

kT1

&mpv21

s" #
; ðB5Þ

here we have assumed the kinetic energy to be small downstream. In turn, the infall velocity v1 is set by the DM gravitational
potential %2 at the virial radius through energy conservation, which yields

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#2,%2

p
; ðB6Þ

the fudge parameter , ¼ 1# R=Rf expresses the ignorance of the exact position of the radius Rf kR at which free fall begins (see
Voit et al. 2003). The upper bound , $ 0:7 obtains if Rf is computed by equating the free-fall speed to the Hubble flow. In fact, based
on many numerical simulations since Bertschinger (1985), we adopt the value , $ 0:37, close to that obtained if the gas inflow
begins at the turnaround radius during the gravitational collapse of a standard ‘‘top-hat’’ perturbation (see Padmanabhan 2003).

We now derive a number of convenient approximations to the temperature and density jumps valid for very strong, moderately
strong, and weak shocks, which are used in x 4 of the main text. For very strong shocks with kT1=&mpv21T1 that occur for
supersonic accretion onto rich clusters, equation (B5) reads ṽ1 ’ 4v1=3; thus, equations (B2) and (B4) respectively approximate to

( ’ 1

3

&mpv21
kT1

;
n2
n1

’ 4; ðB7Þ

the former expresses the limit where full thermalization of the inflow kinetic energy takes place. We can now use equation (B6) with
%2 $ #5:7!2 (the NFW potential corresponding to a concentration c ¼ 5) to find v1 $ 2:1(kTv=&mp)

1=2; putting all of this together
yields $ ¼ kTv=(kT1 ’ 3kTv=&mpv21 $ 0:7, a value consistent with the observations of rich clusters.

For moderately strong shocks with kT1=&mpv21 P 1 that occur for preheated accretion onto poor clusters, equation (B5) gives
ṽ1 ’ 4v1=3þ 5kT1=4&mpv1. Now equations (B2) and (B4) approximate to

( ’ 1

3

&mpv21
kT1

þ 3

2
;

n2
n1

’ 4 1# 15

16

1

(

$ %
; ðB8Þ

relatedly, the parameter $ ¼ Tv=(T1 is lowered from the cluster value around 0.7 to

$ ’ 0:7 1# 3

2

1

(

$ %
: ðB9Þ

For weak shocks with kT1=&mpv21 31 that occur for preheated accretion in small groups, one recovers from equations (B2) and
(B4) the adiabatic limit

( ’ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4&mpv21
15kT1

s

;
n2
n1

’ 1þ 3

2
((# 1): ðB10Þ

APPENDIX C

A NEW FAMILY OF SELF-SIMILAR BLAST WAVES

Hydrodynamic flows are amenable to a self-similar description when their dynamics can be characterized in terms of space and
time variables, and of a small set of parameters with independent dimensions. Although self-similar solutions are only particular
descriptions of a hydrodynamic flow, they often accurately yield its actual asymptotic behavior and offer a useful guide for
understanding its generic features, as discussed by Zel’dovich & Raizer (1967).

Self-similar solutions have been systematically investigated by Sedov (1959) for blast waves originated by time-dependent energy
discharges into a gas with power-law density. Such solutions have then been successfully applied to a variety of astrophysical
problems, such as the propagation of SN remnants (see Chevalier 1976) and of shocks driven by solar flares (see Parker 1963). Most
of these treatments consider a gas with negligible initial pressure so that the resulting blast wave is strongly supersonic; moreover,
they do not include gravitational effects, in particular those due to a dominant DM component.

In the main text we are interested in strong and weak blasts driven by comparable energy discharges into plasmas in virial
equilibrium with the DM at temperatures differing by factors 102 from galaxies to clusters. To cover the full range, we derive here
(see also Lapi 2004) a new family of self-similar solutions that not only include a power-law initial density gradient and time-
dependent energy injection, but also incorporate DM gravity and a finite initial pressure. In Figure 5 we preliminarily outline the
unperturbed equilibrium and the perturbed flow.
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C1. THE AMBIENT MEDIUM

We consider initial configurations constituted by DM profiles

"(r) ¼ "R
R

r

$ %!

ðC1Þ

with power-law index 2 . ! < 5=2; the case ! ¼ 2 corresponds to the standard isothermal sphere. The plasma is assumed to be in
equilibrium within the DM potential well with initial density n(r) / "(r). Such simple power-law runs will be useful for obtaining
self-similar blasts, but also constitute fair piecewise approximations of the plasma distributions expressed by equation (2). The
plasma temperature and entropy profiles are given by

kT

&mp
¼ 2+G"RR!

(!# 1)(3# !)
r2#!; K ¼

2+G&m5=3
p ("RR! )1=3

(!# 1)(3# !)(m=M )2=3
r 2#!=3; ðC2Þ

relatedly, the polytropic index # ¼ 2(1# 1=!) ranges from 1 to 1.2 when ! increases from 2 to 2.5. The total energy of the gas in
equilibrium is

Etot(<r) ¼ 1

2
# 3

5

3# !

5# 2!
(4!# 7)

" #
m(<r)c2s / r5#2!; ðC3Þ

herem(<r) ¼ 4+mp

R r
dx x2n(x) ¼ 4+(m=M )"RR!r 3#!=(3#!) is the gas mass within r and the sound speed is cs ¼ (5kT=3&mp)

1=2 /
r1#!=2. The bounds 2 . ! < 2:5 guarantee the total energy of the system to be finite and negative; hereafter and in the main text we
indicate its modulus with E(<r) & #Etot(<r).

C2. THE BLAST

A blast wave sweeps through the plasma as a result of the energy injections $E(t) by a central source. The ensuing unsteady gas
flow is described by the system of partial differential equations

@tnþ @r(nv)þ
2nv

r
¼ 0;

@tvþ v@rvþ
1

mpn
@rpþ

GM (<r)

r 2
¼ 0;

(@t þ v@r)
p

n5=3
¼ 0; ðC4Þ

supplemented at the leading shock by the Rankine-Hugoniot boundary conditions. The latter may be derived from the general
expressions equations (B1) specialized to the case of internal shocks, i.e., taking the preshock flow velocity ṽ1 in the shock rest
frame equal to #vs, opposite to the shock velocity. This yields

v2 ¼
3

4
vs
M2 # 1

M2
;

p2
p1

¼ 5M2 # 1

4
;

n2
n1

¼ 4M2

M2 þ 3
; ðC5Þ

in terms of the Mach number M & vs=cs. Note that the condition for shock formation and propagation vs / cs can also be written
as p2 þ mpn2v22 / p1; i.e., the total stress pushing the shock outward has to exceed the upstream pressure.

The flow described by the above equations will be self-similar if it can be expressed in terms of the variables r and t and of only
two more parameters with independent dimensions. One must be the gravitational constant G if gravity effects are to be included;
as to the other, we take the quantity "RR! entering the initial state given by equation (C1).

Self-similarity then implies for the law of energy injection:

$E(t) / Gð5#!Þ=!("RR
!)5=!t2ð5#2!Þ=!: ðC6Þ

The resulting time dependencies of the source output turn out to be interesting; the values of the index ! correspond to luminosities
going from a constant (! ¼ 2) to a spike (! ¼ 5=2), the upper range being useful to describe the quasar fading out because of its
own feedback on the accreting gas. Since E(<Rs) / R5#2!

s / t2(5#2!)=! / $E holds, it is easily seen that $E=E is constant during
the blast motion and thus constitutes the key parameter for labeling the solutions. This comes about because the values of $E=E
set the Mach number, i.e., the strength of the shock, as we specify below.

Under self-similarity, equations (C4) are solved along the following lines. First, we use the dimensional parameters of the
problem to construct the self-similarity (adimensional) variable - & r=Rs(t), where

Rs(t) ¼
5+G"RR!!2M2

6(!# 1)(3# !)

" #1=!
t2=! / R(Mt)2=! ðC7Þ
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is the shock radius. It is now seen that the Mach number M ¼ vs(t)=cs½Rs(t), is independent of time and position, as is $E=E. Note
that in our simple model with ! ¼ 2 the blast moves out with constant speed, while for ! > 2 it decelerates.

Then we introduce the adimensional quantities V(-), D(-), and T (-) through

v(r; t) ¼ r

t
V(-); n(r; t) ¼ 1

mpGt2
D(-); T (r; t) ¼ 3&mp

5k

r2

t2
T (-); ðC8Þ

these enable us to convert the partial differential equations (C4) into a set of ordinary differential equations:

- V 0 þ V # 2

!

$ %
D0

D

" #
¼ 2# 3V;

- V 0 2

!
# V

$ %
# 3

5
T T 0

T
þ D0

D

$ %" #
¼ 6

5
T þ V 2 # V þ 24

5

!# 1

!2M2
-#!;

- V # 2

!

$ %
T 0

T
# 2

3

D0

D

$ %
¼#2 V # 1

3

$ %
; ðC9Þ

with boundary conditions at - ¼ 1 (r ¼ Rs) given by

Vs ¼
3

2

M2 # 1

!M2
; T s ¼

(5M2 # 1)(M2 þ 3)

4!2M4
; Ds ¼

24(m=M )

5+

(3# !)(!# 1)

!2(M2 þ 3)
: ðC10Þ

As a last step, we have numerically solved the differential system equations (C9) by using a standard Runge-Kutta integrator with
adjustable time step. For various shock strengths we show in Figure 6 the distributions of density, mass, and entropy in the blast for
the ! ¼ 2 model.

While the radial mass and entropy distributions differ considerably in the blast and in the initial configuration, the entropy
distribution #(m) as a function of the integrated plasma mass m(< r) remains unchanged and reads

#(m) / m(< r)ð6#!Þ=3ð3#!Þ: ðC11Þ

The postshock normalization K2 is raised because of dissipation within the shock, after the general equation (5) in the main text that
has been derived in Appendix B.

Fig. 7.—Mach number M (top) and the piston position k & Rp=Rs (bottom) as a function of $E=E. The solid line is for ! ¼ 2, the dashed line is for ! ¼ 2:25,
and the dotted line is for ! ¼ 2:4.
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The overall energy balance for the blast flow is written

$E(t)# E(<Rs) ¼ 4+

Z Rs

0

dr r2
1

2
mpnv

2 þ 3

2
p# GM (< r)

r
mpn

" #
: ðC12Þ

This equation relates M and $E=E, and the result is shown in the top panel of Figure 7. Note that for strong shocks $E=E / M2

holds; in particular, such a dependence implies that in the limit M2 3 1 (but in fact already for M2 > 3) our family of self-similar
blast waves converge to the standard solutions with negligible gravity and zero initial gas pressure. For example, for ! ¼ 2 and
constant source luminosity one has Rs / Mt / ($E=E )1=2t; since E / Rs holds, one recovers the shock motion Rs / L1=3t /
$E1=3t 2=3, provided by the standard blast wave theory in the strong shock limit. As another example, consider ! ¼ 2:5 and spiky
energy liberation after equation (C6), for which one has Rs / M4=5t 4=5 / ($E=E )2=5t4=5; since now E ¼ const holds, one recovers
the standard dependence Rs / $E2=5t4=5 for strong shock.

From Figure 6 it is easily seen that the flow is confined within a shell that terminates at the leading shock at Rs and begins at a
trailing ‘‘piston,’’ the contact discontinuity located at Rp ¼ kRs < Rs where the action of the source is transferred to the plasma.
Self-similarity implies the thickness 1# k of such a shell to depend only (and inversely) on the shock strength; k is plotted versus
$E=E in the bottom panel of Figure 7.

Analytic approximations may be derived for the limiting behavior of the adimensional variables V, D, and T in the vicinity of
the piston. For a given ! such limiting behaviors turn out to be independent of the shock strength and read

Vp ’
2

!
# 6

5

7

!
# 2

$ %
-

k
# 1

$ %
; Dp /

-

k
# 1

$ %ð!#6Þ=3ð7#2!Þ
; T p /

1

DP
: ðC13Þ

Thus at the inner piston the density diverges weakly but the mass vanishes (so the overall effects of radiative cooling are
negligible), while the temperature goes to zero, making up a finite pressure.

C3. THE SHELL APPROXIMATION

Since the perturbed flow is confined within a shell of constant thickness k between the inner piston and the leading shock, it is
convenient to represent our solutions by using the shell approximation (see Cavaliere & Messina 1976; Ostriker & McKee 1988).
Here we improve on the classic treatment by extracting the value of the shell thickness k directly from the exact solution (see
Fig. 7) in order to obtain results reliable to better than 15%.

The equation of motion for the shell is written

d

dt
m(<Rs)v2½ , ¼ 4+R2

s h pi# p1½ , # 3# !

5# 2!

GM (<Rs)

R2
s

m(<Rs); ðC14Þ

here h pi is the volume-averaged pressure, which as a function of M reads

h pi
p1

¼ 5

8

8# 3!

3# !
(M2 # 1)þ 3

5# 2!
: ðC15Þ

For weak shock with M ! 1 we obtain h pi=p1 ¼ 3=(5# 2!), while in the strong shock limit M31 our result h pi=p1 !
5M2(8# 3!)=8(3# !) matches that known for standard, strong blast waves without gravity (e.g., Cavaliere & Messina 1976).

Integrating equation (C14) leads to

$E(t)# E(<Rs) ¼
1

2
m(<Rs)v

2
2 þ 3

2
h piV # 3# !

5# 2!

GM (<Rs)

Rs
m(<Rs); ðC16Þ

in terms of the shell volume V ¼ 4+R3
s (1# k3)=3; this is the simplified, shell version of equation (C12).

A relevant quantity is the ratio between the kinetic and thermal energy of the blast; inserting equation (C15) into equation (C16),
one finds

$EKin

$ETh
¼ 3

2(8# 3!)(1# k3)

M2 # 1

M2
: ðC17Þ

This is easily seen to vanish in the weak shock limit (M ! 1) and to take on values 3=(16# 6!)(1# k3) for strong shocks with
M31, as in standard blasts with no gravity.

Finally, we remark that equations (C7), (C15), (C16), and (C17) constitute a set of handy relations useful in the main text and
suitable to implement in semianalytic models or hydro+N-body codes of galaxy formation.
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