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A B S T R A C T

A description of the dynamics of a collisionless, self-gravitating fluid is developed and

applied to follow the development of large-scale structures in the Universe. Such a

description takes on one of the assumptions of the adhesion approximation (AA) model,

i.e., the introduction of an artificial viscosity n in the Euler equation, but extends it to deeper

non-linear stages, where the extrapolation of the linear relation c ¼ 2f between the velocity

and the gravitational potentials – at the basis of both the Zel’dovich and the adhesion

models – is no longer valid.

This is achieved by expanding the relation between f and c, in general not explicitly

computable, in powers of the small viscosity n. In this case, the evolution of the velocity

potential is described by a diffusion-like equation for the ‘expotential’ field j ¼ expð2c/2nÞ.

Such an equation includes a source term V(j), which expresses the relation between f and c

as a series expansion in powers of n. Such a term is related to the onset of the non-linear

evolution of the velocity potential and grows from zero (the limit corresponding to the AA)

with increasing time. For terms in V(j) up to order O(n) (the only ones that can be expressed

in a fully Eulerian form), the diffusion equation is solved using the path-integral approach.

The AA is then recovered as a ‘free-particle’ theory [corresponding to VðjÞ ¼ 0�, where the

dynamics is determined by the initial value of j. Our inclusion of the lowest order term in V(j)

substantially changes the dynamics, so that the velocity potential at a given time in a given

Eulerian position depends on the values taken at all previous times in all other coordinates.

This is expected in the non-linear regime, where perturbations no longer evolve

independently, but ‘feel’ the changes of the surrounding density field.

The path-integral solution is computed numerically through an algorithm based on Monte

Carlo realizations of random walks in the Eulerian space. In particular, the solution j at any

cosmic time is obtained upon averaging the value of the potential V(j) at previous times in the

Eulerian locations reached by the random walks.

The solution is applied to the cosmological evolution of a cold dark matter density field,

and the results are compared to the outcomes of an N-body simulation with the same initial

condition. The velocity field in the presented extended adhesion (EA) description is obtained

numerically using the random walks algorithm described above. For the case of a null

potential VðjÞ ¼ 0, this constitutes a novel implementation of the AA which is free from the

numerical errors affecting finite-difference solution schemes for partial differential equation

and is faster than the Gaussian convolution algorithm adopted by Weinberg & Gunn. When

the first-order term of the potential V(j) is included, the proposed extension of the adhesion

approach provides a better description of small-scale, deeply non-linear regions, as is

quantitatively shown by the computation of some statistical indicators. At larger scales, the

satisfactory description of the large-scale texture and of the voids given by the canonical AA

is preserved in the extended model.
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1 I N T R O D U C T I O N

The formation of cosmic structures in the Universe is one of the

key problems in cosmology. In the current, standard theory (see,

e.g., Peebles 1993), they develop from the amplification of initially

small density perturbations due to gravitational instability. For a

collisionless self-gravitating fluid (similar to the non-baryonic dark

matter, believed to dynamically dominate the Universe), the

description of such a process is given by the usual hydrodynamical

equations for the velocity and the density fields (Euler and

continuity equations) in expanding coordinates, plus the Poisson

equation coupling the gravitational potential f to the density field

d. In the linear stage, when the growing density is sufficiently

small, such equations can be solved analytically using a first-order

perturbation technique for the Eulerian density and velocity fields;

higher order perturbation theory can give insights on the quasi-

linear regime where, though small, d becomes comparable to unity

(see, e.g., Munshi, Sahni & Starobinsky 1994); however, the non-

linear regime when jdj . 1 is usually followed in detail through

numerical N-body simulations (see Bertschinger 1998 for a

review). These show that gravitational instability of dark matter

can indeed lead to the kind of large-scale structures observed in the

Universe (starting from de Lapparent, Geller & Huchra 1986; see

Maddox et al. 1990, Saunders et al. 1991, Vogeley et al. 1992 and

Schectman et al. 1996), which include filamentary overdensities

and two-dimensional sheet-like structures, the so-called pancakes;

at the confluence of such one- or two-dimensional structures, high-

contrast ðd . 200Þ, knotty structures appear to form, correspond-

ing to galaxy clusters.

At the same time, several approximation schemes and semi-

analytical approaches have been developed for studying the for-

mation of large-scale structures (LSS). The aim of such approaches

is to gain an insight into the physical processes leading to structure

formation, to comprehend and check the results of the simulations,

and to provide a computational tool which is usually faster and

easier to implement.

The first step in an analytic approach to LSS was taken by

Zel’dovich (1970), who proposed to extrapolate the linear

behaviour of the velocity field to the non-linear regime and to

express the evolution of each particle in terms of its Lagrangian

coordinates. In this case, the trajectory of each particle evolves

along the free-flight path determined by the initial Lagrangian

velocity (for a review see, e.g., Shandarin & Zel’dovich 1989). In

terms of the velocity potential c (as long as no orbit-crossing

occurs, the flow is irrotational and the velocity can be expressed as

7c), it can be easily shown that this corresponds to assume the

velocity potential equal to the gravitational potential, a condition

which holds in linear theory. The Zel’dovich approximation (ZA)

turned out to work surprisingly well, even beyond the regime where

its approximations are realistic (see, e.g., Melott et al. 1983,

Shandarin & Zel’dovich 1989 and Sahni & Coles 1995). However,

it presents some shortcomings, which can be traced back to the

neglect of the back-reaction of the evolving density field on the

gravitational field, and hence on the particle velocities. Thus,

small-scale variations are transferred to much larger scales,

resulting in a poor description of overdense regions; the collapse

time of condensations is in general overestimated; the absence of a

restoring force results in the formation of multistream regions, due

to the crossing of particle orbits, so that pancakes thicken

indefinitely after their formation.

To overcome the above problems, several improvements have

been proposed. The Lagrangian perturbation theory developed by

several authors (see Moutarde et al. 1991, Buchert & Ehlers 1993

and Bouchet et al. 1995) includes the ZA as a first-order solution; at

higher orders, the particle displacement field is determined not

only by the initial Lagrangian velocity (as in the ZA), but also by

the acceleration field. When compared with N-body simulations

(see Bouchet et al. 1995 and Melott, Buchert & Weiss 1995), the

higher order Lagrangian approach turns out to improve the ZA for

what concerns the first collapsing objects, the statistics of over-

dense regions and the compactness of clusters; on the other hand,

underdense regions are better described in the ZA. In any case, the

thickening of pancakes after shell-crossing remains a major

drawback of such elaborate models.

Alternative approaches aiming at overcoming the thickening of

pancakes typical of the ZA are constituted by the frozen-flow

approximation (Matarrese et al. 1992), the linear potential

approximation (Brainerd, Scherrer & Villumsen 1993; Bagla &

Padmanabhan 1994) and the adhesion approximation (AA)

(Gurbatov & Saichev 1984; Gurbatov, Saichev & Shandarin

1985, 1989; for reviews see Shandarin & Zel’dovich 1989,

Vergassola et al. 1994 and Sahni & Coles 1995).

The first two propose to ‘freeze’ the initial velocity and potential

field, respectively, to their initial value; particles then move with a

velocity determined by the local Eulerian value of the initial

velocity potential (or following the line of force of the initial

gravitational potential in the linear-potential approximation). Such

approaches avoid the shell-crossing occurring in the ZA but, as

shown by comparison with aimed N-body simulations (Sathya-

prakash et al. 1995), break down relatively early, soon after the

non-linear length-scale exceeds the mean distance between peaks

of the gravitational potential; in particular, the frozen-flow

approximation, though reproducing reasonably well the density

probability distribution of the dark matter field, fails in moving the

mass particles to the right places when compared with the N-body

simulations.

The AA, on the other hand, takes on the basic assumption of the

ZA (i.e., the equality of the gravitational and velocity potentials)

and introduces an artificial viscosity into the Euler equation to

avoid orbit-crossing. Though introduced phenomenologically, later

investigations by Buchert & Dominguez (1998) show that it is

indeed possible to obtain viscosity-like terms from kinetic theory

of self-gravitating collisionless systems (although the correspond-

ing multistream forces are, in general, anisotropic, unlike the

assumption of the AA). The effect of the viscosity n in the limit

n ! 0 can be straightforwardly computed; particles initially follow

their linear trajectories (the same as in the ZA), but when flow lines

intersect, the colliding particles stick to each other, thus binding

collapsed structures and fixing the principal failure of the ZA. The

networks of structures resulting from implementations of the AA

have a remarkable resemblance to those emerging from N-body

simulations; indeed, the rms density fluctuations agree to better

than 20 per cent on scales larger than ,5 Mpc (Weinberg & Gunn

1990a; Kofman et al. 1992; see also Melott, Shandarin & Weinberg

1994). Such agreement makes the AA a reliable tool for several

astrophysical applications concerning LSS (see, e.g., Nusser &

Dekel 1990 and Weinberg & Gunn 1990b).

Despite of the successes listed above in reproducing the

texture of LSS, the AA model is a much less satisfactory

description when structures at smaller scales are considered

(Weinberg & Gunn 1990a; Kofman et al. 1992). The density

field is less clumpy than appears in N-body simulations, where

walls and filaments fragment into dense clumps, at variance with

the outcomes of the AA. This is, of course, a consequence of
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neglecting the back-reaction of the particle distribution on the

evolution of the velocity field.

Here I propose an Eulerian approach to extend the AA to deeper,

non-linear regimes. It allows me both to avoid the shell-crossing

problem of the ZA and to go beyond the approximation (valid in

the linear regime) stating the equality between the velocity and the

gravitational potential, which is the basic Ansatz of both the ZA

and AA descriptions. As a result, the velocity field felt by a particle

at any given time is affected by the dynamical evolution occurring

up to the considered time, as it must be in the non-linear regime

(see Coles & Chiang 2000).

The equation governing the evolution of the velocity field is

found by expanding the relation between f and c, in general not

explicitly computable, in powers of the small viscosity n. In this

case, the Bernoulli equation, which governs the evolution of the

velocity potential in the AA, can be recast [after the Hopf–Cole

transformation j ¼ expð2c/2nÞ� as a diffusion-like equation with

a source term V(j) constituted by an expansion in powers of n; such

a term expresses the departure of the velocity field c from the linear

behaviour c ¼ 2f, assumed to hold in the AA. Since the lowest

order term in V(j) can be expressed in a completely Eulerian form,

it is possible to solve such an equation in the Eulerian space in this

restricted case.

The solution is obtained using the formalism of Brownian

motion, equivalent to the path-integral formulation used in

quantum mechanics and in statistical physics. In the limit of

small times, VðjÞ! 0 (corresponding to a null potential in the

language of path-integrals), one recovers the standard AA, which

thus constitutes, in the language of path-integrals, a free-particle

theory (see also Jones 1999) whose solution is determined in terms

of the initial field; the first-order term of the potential V(j) –

corresponding to a ‘theory with interactions’ in the language of

path-integrals – introduces the non-linear corrections to the AA;

the solution at a generic time depends not only on the initial field,

but also on its values at all previous times and at all other

coordinates.

To test the proposed description, the solution is applied to the

cosmological evolution of a cold dark matter density field. The

corresponding velocity field is obtained numerically at any time by

constructing – for each Eulerian coordinate – a set of random

trees, which are used to compute the path-integrals with specific

forms of the interaction potential. For a null potential, this

constitutes a novel implementation of the AA which is free from

the numerical errors affecting finite-difference solution schemes

for partial differential equation, and is faster than the Gaussian

convolution algorithm adopted by Weinberg & Gunn (1990a);

when the first-order term in the path-integral potential is included,

the evolved field gives a better description of small-scale, deeply

non-linear regions, as shown by the comparison with an

appropriate N-body simulation.

The plan of the paper is as follows. The Bernoulli equation for

the velocity potential c typical of the AA model is introduced and

extended beyond the linear evolution (Section 2). After a canonical

change of variables (the Hopf–Cole transformation), such an

equation is transformed into a diffusion-like equation for j with a

potential term which expresses the non-linear evolution of the

transformed velocity potential. The latter term is expanded in

powers of the artificial viscosity; the solution for the leading order

is obtained using the path-integral formalism (Section 3), and it is

numerically implemented through the construction of random

walks for the transformed velocity field (Section 4). The results

(Section 5) are then compared with the outputs of an N-body

simulation with a cold dark matter power spectrum for the initial

density perturbation field. Sections 6 and 7 are devoted to

conclusions and discussion.

2 B A S I C DY N A M I C S

It can be easily shown that the Euler equation for a collisionless

self-gravitating fluid in the Newtonian limit in the expanding

Universe can be conveniently rewritten as a Bernoulli equation for

the velocity potential, when rescaled variables are used (Gurbatov

et al. 1989; Kofman 1991). If the comoving peculiar velocity field

u ¼ 7c _a is expressed in terms of the gradient of a velocity

potential c and of the time derivative of the expansion factor a,

then the evolution of the velocity potential is governed by

›c

›a
þ

1

2
ð7cÞ2 ¼ 2

3

2a
ðfþ cÞ: ð1Þ

Here f is the gravitational potential divided by 3t2
0/2a3

0, where t0
and a0 are the initial time and expansion factors, respectively.1

The ZA can be recovered from equation (1) imposing that

f ¼ 2c, a condition which is valid in the linear regime. The

solution of equation (1) is then

cðx; aÞ ¼ c0ðqÞ þ
ðx 2 qÞ2

2ða 2 a0Þ
; ð2Þ

where x and q are the Eulerian and Lagrangian coordinates of a

particle with trajectory x(q, a). The solution of equation (1) is char-

acterized by the remarkable property that7xcðx; aÞ ¼ 7qc0ðqÞ. Thus

the particles trajectories are flee-flights with x ¼ qþ ða 2 a0Þuq

determined by the initial velocity uq ¼ 7cq ¼ 27fq.

The AA consists in keeping the Ansatz f ¼ 2c, but adding to

the left-hand side of equation (1) a viscosity term 2n72c. With the

Hopf–Cole transformation c ¼ 22n ln j, the Bernoulli equation

(1) is transformed into a linear diffusion equation ›j/›a ¼ n72j,

where the expansion factor plays the role of time; the solution is

well known to be the convolution of the initial condition with a

Gaussian whose variance is proportional to the time variable.

Transforming back the solution for j into the velocity potential, one

obtains the expression for c in the AA, which reads

cðx; aÞ ¼ 22n ln
1

4pnða 2 a0Þ
3=2

ð
d3q e2 1

2n
Sðx;q;aÞ

� �
; ð3Þ

where the action is

Sðx; q; aÞ ¼ c0ðqÞ þ
ðx 2 qÞ2

2ða 2 a0Þ
: ð4Þ

It can be shown (see, e.g., Vergassola et al. 1994) that, in the limit

n ! 0, the solution reads

acðx; aÞ ¼
q

sup ac0ðqÞ2 q 2/2þ x·q
� �

2 x 2/2: ð5Þ

The confluence of different Lagrangian points into a single

Eulerian coordinate gives rise to the formation of caustics and

knots, reproducing the skeleton of LSS, and avoiding the shell-

crossing. Indeed, given a coordinate x at a time corresponding to a,

the Lagrangian points corresponding to orbits leading to x are all

1 Whenever irrelevant for the exposition and for the computations, the

spatial argument x will be omitted; the dependence on the expansion factor

will be often indicated with a subscript, so that c(x, a) will be often

indicated as ca. The subscript 0 will be used for fields computed at the

initial time, so that c0 ; ca0
.
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the q* where the maximum in equation (5) is attained. Shell-

crossing does not occur in the AA, since the property that

½q*ðx; tÞ2 q*ðx
0; tÞ�·ðx 2 x0Þ $ 0 holds.

3 E X T E N D I N G T H E A D H E S I O N

A P P R OX I M AT I O N

All the schemes discussed above are characterized by the

extrapolation of the relation c ¼ 2f to the non-linear regimes,

with the resulting limitations discussed in the Introduction.

A step forward can be made considering the remaining equations

for the dark matter fluid. The continuity equation can be recast in

terms of the rescaled density field h ¼ dþ 1 to read

›h

›a
þ u·7hþ h7·u ¼ 0: ð6Þ

A formal solution of the above equation can be found upon

integrating along the particle trajectory x(a), where x is the

comoving Eulerian coordinate. Then one obtains

dðx; aÞ ¼ ½d0ðqÞ þ 1� e
2
Ð
Ca ðxÞ

da07·u½xðq;a0Þ;a0 �
2 1; ð7Þ

where integration over Ca(x) indicates integration over the particle

trajectory from the Lagrangian coordinate q at the initial time a0 to

the Eulerian position x at the time corresponding to a. The above

density field is related to the gravitational potential by the Poisson

equation

72f ¼
d

a
: ð8Þ

To obtain an equation for c, we start from equation (1) modified

with the addition of the viscosity term 2n72c on the left-hand side

After substituting to 72f the value dðx; aÞ/a obtained from equation

(8), one finally obtains

›Dc

›a
þ

1

2
Dð7cÞ2 2 nD72c

¼ 2
3

2a

ðd0ðqÞ þ 1Þ e
2
Ð
Ca ðxÞ

da0Dc½xðq;a0 Þ;a0 �
2 1

a
þ Dc

8<:
9=;: ð9Þ

To transform the left-hand side of equation (9) into a diffusion

term, we perform the canonical Hopf–Cole transformation

c ¼ 22n ln j, to obtain

D 2
2n

j

›j

›a
þ

2n 2

j
Dj

� �

¼ 2
3

2a

½1þ 2anDln j0ðqÞ� e
2n
Ð
Ca ðxÞ

Dln j da0

2 1

a
2 2nDln j

8<:
9=;;

ð10Þ

where we have used the property that d0ðqÞ ¼ 2aDc0ðqÞ ¼

2naDln j0ðqÞ; valid in the linear regime, as appropriate, since the

above quantities are computed at the initial time corresponding to a0.

We seek for a perturbation expansion of the right-hand side of

the above equation, which at lowest order must be zero (according

to linear theory and to the Ansatz in the ZA and the AA) and at

higher orders detach from the null value according to the growth of

structures in the non-linear regime. To this aim, we expand the

exponential on the right-hand side in powers of the small viscosity

n. Keeping terms up to O(n 2) (the order of the diffusion term on the

left-hand side), one obtains

›j

›a
2 nDj ¼

3

2a
jVðjÞ; ð11aÞ

VðjÞ ; D21
aDln j0ðqÞ þ

Ð
CaðxÞ

Dln j da0 þ ðn/2Þ
Ð
CaðxÞ

Dln j da0
� �2

a

264
þ2nDln j0ðqÞ

ð
CaðxÞ

Dln j da0 2 Dln j

�
: ð11bÞ

The computation of all terms involving the inverse-Laplacian

operator D21 is, of course, extremely difficult. It is possible,

however, to put in evidence some of the terms in the ‘potential’

V(j). In particular, it turns out (see Appendix A) that

D21Qa ; D21

ð
CaðxÞ

Dln j da0
� �

¼

ða

a0

da0ln ja0 þ 2nD21

ð
7Q·7ln ja0 da0 ð12Þ

and

Dln j0ðqÞ ¼ Dln jþ 2n

ð
CaðxÞ

7ðDln jÞ·7ln j da0: ð13Þ

Inserting the above equations into equations (11a) and (11b), these

can be written in compact form as a diffusion equation with a

source term (or Shrödinger-like equation in Euclidean time):

›j

›a
¼ nDjþ

3

2a
jðV1 þ nV2Þ; ð14aÞ

V1 ¼

ða

a0

ln ja0 da0/a ; ln ja; ð14bÞ

V2 ¼ D21 2
Ð
7Q·7ln ja0 da0

a
þ
ð
Ð
CaðxÞ

Dln j da0Þ2

2a

"

þ
2Dln j0ðqÞ

Ð
CaðxÞ

Dln j da0

a
þ 2

ð
CaðxÞ

7ðDln jÞ·7ln j da0

#
:

ð14cÞ

The above equation shows that the non-linear dynamics with

viscosity is modified with respect to the AA by the effect of two

terms. (i) A sort of ‘time-average’ of the velocity field, correspond-

ing to ‘potential’ V1; this constitutes the lowest order modification

to the linear Ansatz c ¼ 2f of AA. (ii) An explicitly non-local

term V2, involving the inverse Laplacian; of course, it is over-

whelmingly difficult to compute any of the terms contained in V2.

In the following, the solution of equation (14) will be restricted

to the first term V1, the one that is treatable in a fully Eulerian form;

we shall refer to the corresponding dynamics as the extended

adhesion (EA) model. Note that the other term V2 enters the

equations multiplied by the small viscosity n, so that its effects on

the dynamics should be small. Although this is an encouraging

property, a rigorous full perturbative solution of equation (14)

would require keeping the terms up to order n, since this is the

order of the diffusive term nDj characteristic of adhesion models.

The lowest order (in n) term of the potential (the ‘time-average’

in V1) is expected to introduce relevant modifications to the

dynamics with respect to the AA, thus representing a significant

step forward in the description of the non-linear regime. First, we
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note that the source term V1 is growing from zero with increasing

time ðV1 ! 0 for a ! a0Þ as is expected for a term connected with

the departure from linearity. Thus, for small times the system

behaves much like the AA; at later times the term V1 will set in,

affecting the dynamics in the deeper non-linear regime. The first

modification introduced by V1 is that the velocity field at a given

time is no longer determined by the initial field j0, as was resulting

from the linear Ansatz c ¼ 2f characteristic of the ZA and the

AA (see equations 2–4).

At early times, in the quasi-linear regime, further insight into

the potential term V1 can be gained by a series expansion of the

velocity potential c ¼ c ð1Þ þ c ð2Þ around the initial time a0; terms

of increasing order correspond to consider increasing powers of a.

The dynamics resulting from equations (14a) and (14b) can be

compared to the exact perturbation theory (valid for small density

contrasts and close to the initial time) up to second order in c

(where exact solutions are available). The first-order term (the

linear solution) is the same for the exact theory, AA and EA,

namely c ð1ÞðxÞ ¼ 2f0ðxÞ; the second-order term in AA and EA

can be obtained by inserting the first-order solution in the (7c)2

term in the Bernoulli equation 1 (at early times particles sticking

occurring in AA and EA is unimportant, so that the viscosity term

can be neglected in this restricted context) and letting c ¼ 2f (for

the AA, according to the Zel’dovich approximation) or fþ c ¼

2 �c for the EA (after transforming equations 14a and 14b back into

the c variable), where c̄ is the average over a of the velocity

potential which we express as �c < bc. After the above procedure,

the AA and EA solutions at second order are c
ð2Þ
AA ¼ 2ð1=2Þ �

ð7f0Þ
2a and c

ð2Þ
EA ¼ 2½b/ð3 2 2bÞ�ð7f0Þ

2a; these have to be

compared with the exact second-order solution which contains a

non-local term, i.e., 3=7D21½7ð7f0Df0Þ�, which is not reproduced

by the AA or by EA with the potential V1, plus a local term

c
ð2Þ
exact ¼ 2ð6=21Þð7f0Þ

2a (see Munshi & Starobinsky 1994). Note

that (for b < 1=2 at second order) the EA at second order yields

c
ð2Þ
EA ¼ 2ð1=4Þð7f0Þ

2a, which is closer to the exact term than the

AA. Thus, when a time expansion of the velocity potential is

considered for small times, the potential obtained from both the EA

and AA have the same spatial structure as the local part of the exact

second-order correction, but the EA is closer in normalization to

the exact solution.

At later times, a property of the dynamics described by equations

(14) is that the changes of the velocity field in the course of the

evolution now explicitly affect the dynamics. In addition, as will be

discussed in detail in Section 4.3, the presence of a potential V(j)

depending on j in equation (14) introduces non-local features in

the solution, so that the field j(x, a) depends on the value of the

field at other Eulerian points. This feature is expected to arise in the

non-linear regime, since the density fluctuations cease to evolve

independently and ‘feel’ the effect of the whole mass distribution

(we refer to Section 7 for a more extended discussion on the effects

of the term V1 on the overall evolution of LSS).

To quantitatively explore the above effects, we now proceed to

solve the diffusion equation (14), restricting the consideration to

only the first term V1.

4 S O LV I N G T H E D I F F U S I O N E Q UAT I O N :

T H E R A N D O M WA L K A P P R OAC H

To discuss the solution of the diffusion equation (14) let us start

with the simple case when no source term is introduced ðV1 ¼

V2 ¼ 0 in equation 14); this corresponds to the AA. The approach

used for this case will be then extended to include the term V1(j).

4.1 Free-diffusion: recovering the adhesion approximation

It is well known that the linear diffusion equation ›j/›a 2 nDj ¼ 0

describes the time evolution of the probability distribution for a

Gaussian random walk. Let us define a random variable bs which,

as time is incremented by a step ds, increments its value by a

random amount db extracted from a Gaussian distribution with

variance s 2 ¼ 2n ds along a path whose time coordinate s ranges

from a0 to the time a. Then the solution of equation (14) at the

point x can be written in terms of the initial field j0 computed at the

locations b(a), i.e., the coordinate reached by the random path by

the time a. In particular, the solution writes (see, e.g., Gärtner &

Figure 1. Panel (a): An illustration of the random-walk solution to the

diffusion equation with no source term; for the sake of simplicity, the

illustration is restricted to a one-dimensional space (indicated as X in

the label on the horizontal axis). To obtain the solution at the point x at time

a, different realizations of a Gaussian random walk are constructed, with

the condition that they all start from the Eulerian point x at time a0; in the

figure, three such paths are schematically illustrated and labelled b1(a ),

b2(a ) and b3(a ). The points bJ(a ) reached by the random walk at time a are

then projected backwards to the initial time a0 (and labelled b1, b2 and b3 in

the picture). The average of the corresponding values of the initial field j0 at

such points [indicated as j0ðb1Þ; . . .; j0ðb3Þ� yields the solution. Panel (b):

The corresponding graphical representation of the solution when a source

term (of the kind of V1 in equation (14) is introduced in the diffusion

equation. Here, for the sake of simplicity, only one realization [indicated by

bJ(a )] of the random walk is shown. To obtain the solution at time a,

besides computing the initial field at the location b(a ) as in panel (a), all the

field ja0 at times a0 , a are required, and have to be computed at the points

reached by the random walk at the times a0. Such values of the fields are

used to compute the potential V1; see point (iii) in the text. Again the solution

is found upon averaging over all the realizations of the random walk.
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Molchanov 1991)

jðx; aÞ ¼ kj0½bðaÞ�l; ð15Þ

where the average refers to the ensemble of paths bs departing from

x at time 0. We indicate with b(a) the value of the random walk at

time a.

Fig. 1(a) illustrates how this solution works, for the one-

dimensional case where a simple visualization is possible. To find

the function j(x, a), a number of realizations of the random walk

are started from the point x at a0. At the time a, each Eulerian point

reached by the Jth realization bJ(a) of the random walk is

‘projected’ at the initial time a0 (the points b1; . . .; bn in Fig. 1a),

and there the initial function j0(bJ) is computed. The solution is

obtained after averaging over all the possible bJ, weighting by their

probability to occur. Since for a Gaussian random walk this is a

Gaussian with variance s 2ðaÞ ¼ 2nða 2 a0Þ, the projections on the

a0 axis of the points bJ(a) (i.e., the points b1; . . .; bn in Fig. 1a) will

deviate from the initial position x of the random walk with a

probability

PðbÞ ¼
1

½4pnða 2 a0Þ
3=2�

e2 1
2n
ðx2bÞ2/2ða2a0Þ: ð16Þ

According to what was said above, the solution at time a is then

jðx; aÞ ¼

ð
d3bPðbÞj0ðbÞ: ð17Þ

Indeed, performing the Hopf–Cole transformation back to the

velocity potential c ¼ 22n ln j, the velocity potential of the AA

(equations 3 and 4) is obtained.

Note that the above solution can be written in the language of

path-integrals, widely used in quantum mechanics (Feynman &

Hibbs 1965):

jðx; aÞ ¼

ð
Kðx; a; x0; a0Þjðx; a0Þ dðx0Þ: ð18Þ

The kernel K is the particle propagator which is generally written as

Kðx; a; x0; a0Þ ¼

ðx

x0

eS½bðsÞ�D½bðsÞ�: ð19Þ

The integral on the right-hand side is actually a sum over all the

random paths b(s) that connect x0 at the initial time to x at the

present time, the variable s corresponding to the time variable of

the random walk. The symbol D[b(s)] implies integration over

positions at intermediate times in the random walk; for a discrete

walk constituted by n-steps labelled s1; . . .; sn, it takes the form

D½bðsnÞ� ¼ Pn
i¼0 bsi

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðsiþ1 2 siÞ
p

. The action Sb(s)] actually

weights the paths contributing to the integral. For the free diffusion

equation the action is that of a free particle, containing only the

‘kinetic’ term S ¼ 2
Ð
ð1=4nÞ½dbðsÞ=ds�2 ds. Thus, in this language

the AA (leading to a free-diffusion equation for the transformed

velocity field j) corresponds to a free-particle theory.

4.2 Diffusion with a source term

The solution for a diffusion equation with a source term can be

obtained generalizing the action in equation (19) to include the

presence of a potential term. When V(j) is included, the action

takes the form

Sðb; aÞ ¼ 2

ða

a0

1

4n

dbðsÞ

ds

� �2

2V½jðb; sÞ�

( )
ds: ð20Þ

When inserted into the path-integral (equations 18 and 19), this

provides a solution to equation (14). Thus the terms V1 in equation

(14b) constitute an interaction potential proportional to the time

average of the c. The non-linear effects in the evolution of the

velocity field of a self-gravitating fluid with artificial viscosity are

then mapped into a theory with interaction for the field j.

The random-walk representation of the solution defined by

equation (20) is the analogue of equation (15), and reads (see

Gärtner & Molchanov 1991)

jðx; aÞ ¼ kj0ðbaÞ e

Ð a

a0
V{j½bðsÞ�} ds

l: ð21Þ

Of course, since the function j itself appears as an argument of the

potential on the right-hand side, equation (21) actually represents

an equation for j, which is equivalent to equation (14). To show

such equivalence and to discuss how the above solution works, let

us write the time evolution of the field j(x, a) satisfying equation

(21):

jðx; aþ daÞ ¼ kj0½bðaþ daÞ�e

Ð aþda

a0
V{j½bðsÞ�} ds

l: ð22Þ

Expanding both the first and second factors in the average on the

right-hand side, one obtains

j0½bðaþ daÞ� ¼ j0½bðaÞ� þ db·7j0½bðaÞ�

þ 1
2
ðdbÞ272j0½bðaÞ�; ð23aÞ

e

Ð aþda

a0
V{j½bðsÞ�} ds

¼ e

Ð a

a0
V{j½bðsÞ�} ds

½1þ V{j½bðsÞ�} ds�: ð23bÞ

We insert the above expansions into equation (22) and perform the

average over the distribution function p(db). If this is symmetric

and with variance 2 n da (we choose it to be a Gaussian), then the

terms proportional to db cancel out, and we are left with

jðx; aþ daÞ ¼ kj0½bðaÞ e

Ð a

a0
V{j½bðsÞ�} ds

l

þ kj0½bðaÞ� e

Ð a

a0
V{j½bðsÞ�} ds

lVðjðaÞ da

þ n da72kj0½bðaÞ� e

Ð a

a0
V{j½bðsÞ�} ds

l ð24Þ

out to order O(da 2). Substituting equation (21) for the ensemble

averages, dividing by da and taking the limit da ! 0 yields

equation (14) for a generic potential V(j) on the right-hand side.

This shows that equation (21) is a reformulation of equation (14) in

terms of random walks.

4.3 Implementing the solution of the diffusion equation with

source term

Here we shall take advantage of the formulation (21) to develop a

numerical method for computing the solution of equation (14).

This will allow to avoid the use of finite-difference schemes for

integro-differential equations which are characterized by delicate

numerical instabilities.

To solve equation (21) with numerical realizations of random

walks, we first set up a grid of three-dimensional coordinates x and

of time-steps, where the transformed velocity potential j has to be

computed. Then we proceed through the following steps.

(i) At the initial time a0, for each Eulerian position x, we assign

the initial velocity field, and hence the initial field j0ðxÞ ¼ jðx; 0Þ.

We initialize Nreal realizations of random walks, associated with

912 N. Menci

q 2002 RAS, MNRAS 330, 907–919



the considered Eulerian coordinate x with the initial condition

bx
Jða0Þ ¼ x, where J is the label of the realization, J ¼ 1; . . .;Nreal.

The initial value of the potential V1(j0, a0) in equation (14) is set

equal to zero.

(ii) We increment the time-step by da. For each coordinate x we

update the random walk bx
JðaÞ associated with it by extracting the

increments dbJ from a Gaussian distribution (with variance 2 n da)

for each realization J. For each coordinate x, we update the variable

bx
JðaÞ ¼ bx

Jða 2 daÞ þ dJb for each realization J of the random

walk.

(iii) We compute j0½b
x
JðaÞ� by interpolating the initial field j0 in

the point bx
JðaÞ.

We evaluate the action Sx
JðaÞ ¼ Sx

Jða 2 daÞ þ V1{ja2da½b
x
Jða 2

daÞ�} da; entering the solution (21) using the value of the field j at

the previous time-step to compute the potential V1(j).

(iv) We compute numerically the average defining the solution

equation (21) by summing up all the realizations of the random

walk:

jaðxÞ ¼
1

Nreal

XNreal

J¼1

j0½b
x
JðaÞ� e

Sx
J ðaÞ: ð25Þ

(v) Having found the solution at the time corresponding to a, we

iterate from step (ii), until the final time is reached.

Analogously to the free-diffusion case, we give a graphical

representation of the solution corresponding to the above algorithm

(Fig. 1b). Again a random walk starting from x at a ¼ a0 is drawn,

and the initial field j0 is computed at the projected points

corresponding to the Eulerian position reached by the random

walks ba. However, in this case, for computing the field ja at time a

the function ja½bða
0 , aÞ� has to be computed at all previous times

(see point iii), since they constitute the argument of the potential V1

entering equation (21).

A very important point emerging from the above solution of

equation (14) is that the value of the field j(x, a) at a given

coordinate x does indeed depend on the value of the field at other

coordinates. In fact, for computing the field at the point x, the

functions ja0,a entering the potential V1, must be computed at all

points b(a0). This is at variance with the case of simple diffusion,

where all is needed to compute the solution is the initial field j0 and

the final localization of the random walk b(a). Of course, such

property enters only when the ‘interaction’ potential V1 is set in.

This shows that even the first-order term V1 in equation (14)

introduces the typical effects of the non-linear dynamics, i.e., the

influence on the velocity field of (a) the changes of it occurred at all

previous times, and of (b) the value taken by the field in all other

Eulerian points.

Thus we expect that the resulting dynamics ‘feels’, at some

level, the changes of the fields in the course of evolution, a feature

that is completely missing in the AA, as discussed above.

5 R E S U LT S A N D C O M PA R I S O N W I T H

N - B O DY S I M U L AT I O N S

To test the above method for solving equation (14) and whether

restricting to the term V1 in equation (14) gives an accurate

description of the non-linear dynamics, we compare the outcomes

of the proposed description with those of an N-body cosmological

simulation. Although a complete, systematic comparison between

the N-body and the semi-analytic descriptions – including, e.g.,

different cosmological/cosmogonical initial conditions – is out of

the scope of this paper, we will compare the density distribution

and some statistical indicators which are believed to describe to

some extent the matter field in the non-linear regime, for a given

cosmological initial condition.

To perform the simulation, we adopt an adaptive P3M N-body

code (see Hockney & Eastwood 1981 and Couchman 1991 for a

detailed description) for self-gravitating, collisionless dark matter.

In particular, we use the public version of the Couchman’s adaptive

P3M code (Couchman, Thomas & Pearce 1995) for the evolution

of the dark matter, which was also used to generate the initial

velocity field which is evolved both by the N-body and (according

to our description) after equation (14).

To emulate the behaviour of the cosmological dark matter fluid,

a distribution of 643 particles is evolved in a comoving simulation

box with periodic boundary conditions; the initial positions are

assigned to be at the centre of the cells of a 643 cubic grid. The

initial displacement (velocity) is given by u0 ¼ 7c0 _a da (we use a

definition of the velocity potential rescaled to the Hubble

expansion; see Section 2). The initial velocity potential is derived

under the approximation (valid in the early, linear regime)

c0 ¼ 2f0, where the initial potential is a Gaussian random field

with power spectrum PfðkÞ ¼ Ak n24T 2ðkÞ, as it is commonly

taken for primordial cosmological perturbations. The transfer

function T(k) depends on the nature of the dark matter field; here

we adopt the form appropriate for cold dark matter (Davis et al.

1985; for recent fitting forms see Eisenstein & Wu 1999 and

reference therein). The spectrum is normalized to the data from

COBE (Stompor, Gorsky & Banday 1995; Bunn & White 1997).

We assume a flat cosmology with matter density parameter V ¼ 1

and Hubble constant h ¼ 0:5 (in units of 100 km s21 Mpc21). The

physical length of the simulation cube is L ¼ 64 h 21 Mpc; the

gravitational force was softened at small distance, and the adopted

softening parameter corresponds to 0.2 in mesh units.

To evolve an initial spatial distribution of particles according to

our description, equation (14) is solved for both the case of free-

diffusion (corresponding to the AA), and for a source term given by

V1 defined by equation (14b) (the EA model). At each cosmic time,

the solution of equation (14) for the transformed velocity field j(x)

is found by generating, for each x, a number Nreal of random walks

b(a) through a Monte Carlo procedure, as described in detail in

Section 4.3. After transforming back to the velocity potential

c ¼ 22n ln j, the position x(a) of each particle is then updated at

each time-step to the new position xðaþ daÞ ¼ xðaÞ þ uaðxÞ da ¼

xðaÞ þ 7caðxÞ _a da:

The space grid used for the Monte Carlo solution described in

Section 4.3 is taken to coincide with the 643 simulation box. As for

the number of realizations of the random walks, it has been

checked that convergence in the solutions is obtained already for

Nreal $ 102 (the latter value requiring <100 Mbyte of computer

memory; of course, the larger the value of Nreal, the larger is the

requested memory and the slower is the numerical implemen-

tation); performing a test for the free-diffusion case with Gaussian

initial conditions, a value Nreal ¼ 102 yields errors dj/jexact #

1023 when the numerical solution is compared to the exact one

jexact, whose analytical form is known in this case; the results

shown below are obtained for Nreal ¼ 100. To numerically

implement our description, we adopt a finite value of the viscosity.

Since we adopt the adimensional expansion factor a as the ‘time’

variable in the equations for the velocity field (see equation 1, and

equations 9 and following) the viscosity has the dimension of

Length2; we adopt the value n ¼ 1021 pixel2 (the pixel

corresponding to the mesh size), which ensures convergence in

the sense that results with smaller values of n are indistinguishable;
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a discussion on the physical effects of adopting different values of

n in the AA is given in Weinberg & Gunn (1990a).

While in the case of the AA and EA the velocity potential ca is

obtained from equation (14), we recall that for N-body simulations

the same displacement is obtained from the particle density field

after solving the Poisson equation on the grid and integrating the

resulting acceleration field. Thus, in such simulations, once

the particles are moved, the resulting density field has to be

recomputed to allow for solving the Poisson equation at the next

time-step. Such a procedure, as well as double Fourier-transforms

required to compute the solution of the Poisson equation, is not

needed in the semi-analytic approaches, like the AA or EA, making

them usually much faster than the simulations. In our case, the

main source of time-consumption in the numerical implementation

is due to the large number Nreal of Monte Carlo realizations of the

random walk needed to obtain reliable averages in equation (21).

The simulations are started at an initial time corresponding to an

expansion factor a0 ¼ 1=16 (normalized as to yield a ¼ 1 at the

present time). The resulting particle distribution at the final time

a ¼ 1 is shown in Fig. 2 for the N-body simulation (left panel), the

AA (middle panel) and the EA (right panel) for a slice 4 Mpc thick.

The set of parameters adopted for the N-body simulation and for

the AA and EA implementation are recalled and summarized in the

caption.

Compared to the simulation, the AA reproduces well the general

texture of LSS, but the small-scale features are underproduced. In

particular, while in the simulations extended structures appear

fragmented into dense knots, in the AA they appear more as a

continuous filament. This is because the effects of the changes of

the field in the course of evolution (typical of the non-linear

regime) are neglected in the AA; since small scales are those which

are evolved more deeply into the non-linear regime, it is natural

that the AA does not reproduces them in detail. On the other hand,

the EA seems to provide a more satisfactory description of the

density field down to small scales; knotty, small-scale features are

remarkably similar to those arising from the simulation, as is

apparent, e.g., from the structures just above and below the large

void at the centre of the picture. Most of the structures appearing in

the simulations are reproduced by EA which seems to reproduce

quite well the various degrees of clumpiness.

Thus the EA seems to improve the adhesion approach in that it

provides a better description the fragmentation of filaments in

correspondence of the denser knots. Such interpretation is

confirmed by the more quantitative analysis performed in Fig. 3,

where it is shown the deviation of the density field computed in the

AA (top panel) or in the EA (bottom panel) from that resulting

from the N-body simulation.

The comparison is performed on the same slice shown in Fig. 2,

but limited to the region surrounding the big central void to provide

a more clear graphical rendition. Note that the deviations of the AA

density field are considerably larger than those occurring in the EA.

More importantly, while the map of the deviation in the EA shows

no obvious spatial structure, the deviation map of the AA clearly

shows larger deviations correlated with the location of the

filaments; even the perimeter of the large central void of Fig. 2 can

be recognized in the AA map (top panel) of Fig. 3. Again this is

related to the lack of fragmentation of filamentary structures

typical of the AA.

The above differences, of course, can be traced back to the

modification of the AA velocity field induced by the ‘potential’

term V1 in equation (14). To show this in detail, the velocity field in

the AA (top panel) and the EA (bottom panel) is represented in

Fig. 4. For better readability, the plot refers to a further blow-up of

the slice in Fig. 2, namely the region just above the big void

(coordinates are specified in the caption), where the AA and EA

yield clearly different degree of clumpiness. Inspection of Fig. 4

shows that the main, large-scale streams are indeed very similar;

however, in the EA a modulation of such large-scale flows appears,

resulting into a break-up of the coherent motions (defining the

filamentary regions) into more structured velocity configurations,

which are responsible for the formation of knots along the

filaments.

The above consideration about the mass distribution in the

different schemes can be tested more quantitatively through the

computation of some basic statistical indicators. In particular,

the correlation function J(r) and the rms density kd2
Nl1=2

are

computed as a function of the scale r, where the latter is obtained

by counting the density of particles in cells with radius r, and

averaging over the simulation volume. The results are shown in

Fig. 5 for redshifts z ¼ 1 and z ¼ 0. Note that, while at large scales

Figure 2. Slices through the particle distribution at redshift z ¼ 0 from the N-body simulation (left panel), the adhesion approximation (middle panel) and the

extended adhesion model (right panel) proposed in this paper. Each slice is 4 pixels thick, while the simulation box occupies a 643 grid. Initial conditions from a

COBE-normalized CDM power spectrum in an V ¼ 1 universe with Hubble constant h ¼ 0:5. The parameters used for the N-body and for the Monte Carlo

implementation of the AA and EA are the following: physical length of the simulation cube L ¼ 64 h 21 Mpc; initial expansion factor a0 ¼ 1=16 (assuming that

a ¼ 1 at the present time); the Plummer softening parameter adopted in the N-body simulation is 0.2; the number of Monte Carlo realizations used to obtain the

velocity field for the AA and EA is Nreal ¼ 102; the artificial viscosity is n ¼ 1021 (mesh units)2.
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the AA gives a fair description of the density field at r * 5 Mpc, at

small scales it underestimates both the correlation function and the

average density, as already obtained by Weinberg & Gunn (1990a).

The same statistical properties seem to be well reproduced by EA,

as it is shown by the agreement with the N-body results in Fig. 5,

which is preserved down to the resolution limit of the simulations.

Again, this is due to the fact that structures in the AA arise directly

from features in the initial conditions, while the EA, to some

extent, captures the effect of the changes that the matter field

undergoes in the course of evolution.

6 C O N C L U S I O N S

A description of the dynamics of a collisionless, self-gravitating

fluid has been developed and applied to follow the development of

large-scale structures in the Universe. Such description takes on

one of the assumptions of the adhesion approximation (AA) model,

i.e., the introduction of an artificial viscosity in the Euler equation,

but extends it beyond the approximation which make it strictly

valid only in the linear regime, namely the assumption of equality

between the velocity and the gravitational potential, c ¼ 2f. The

key points characterizing the proposed approach (extended

adhesion, EA) can be summarized as follows.

(1) The dynamics emerging from such a novel description is

determined by a diffusion-like equation for the transformed

velocity potential j ¼ expð2c/2nÞ. Such an equation includes a

source term V(j) (or an ‘interaction’ term in the action, if the

diffusion equation is considered like a Shrödinger equation in

Euclidean time) which grows from zero (the limit corresponding to

the AA) with increasing time; this in fact describes the onset of

non-linear evolution of the velocity potential. The AA is then

recovered, in path-integral language, as a free-particle theory.

(2) When the ‘potential’ V(j) is expanded in powers of the small

artificial viscosity n, the term corresponding to the lowest order can

be expressed in a fully Eulerian form. In this case it is possible to

compute a solution for j based on the realization of random walks

in the Eulerian space. The solution at the time a and at the point x is

related to a proper sum over the fields computed at the preceding

times at the Eulerian coordinates reached by a Gaussian random

walk starting from x at the initial time.

(3) Such a solution of the diffusion equation explicitly shows

that the source term introduced in the proposed extension of the

AA affects the dynamics in two key respects: (i) the velocity

Figure 4. The Eulerian velocity field from the AA (top panel) and from the

EA (bottom panel) is shown for the region ð20 , x , 40, 40 , y , 60 in

units of the pixel size) just above the void in Fig. 2. The length of the arrows

is proportional to the modulus of the velocity.

Figure 3. The overdensity ðN 2 NN2bodyÞ/NN2body of the particle density N resulting from the AA (left-hand panel) and from the EA (right-hand panel) with

respect to the particle density from the N-body simulation NN-body is plotted as a function of the x–y coordinates, for the same z-plane as for Fig. 2. The x–y

region of the maps is a blow-up of the central region of the slice in Fig. 2, smoothed with a radius of 2 pixels.
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potential c at a given time is no longer determined by its initial

form, but depends on the values taken at all previous times; (ii) the

value taken by c at a given point depends on the value taken at the

other points. Both these features are characteristic of the non-linear

dynamical regime, when the density and fluctuations cease to

evolve independently and ‘feel’ the effect of the whole mass

distribution.

Thus the proposed extension of the adhesion approximation is

expected to provide a better description of the regions which

underwent a deeper non-linear evolution. To test such expectation,

the solution for the velocity field in the EA approach has been used

to compute the time evolution of a cosmological dark matter field,

and the results have been tested against N-body simulations.

When one restricts to consider a null source term VðjÞ ¼ 0, the

AA with finite viscosity is recovered. In this case our results and

comparison with the N-body simulations yield results similar to

those in Weinberg & Gunn (1990a), as is shown qualitatively by

the particle spatial distribution (Fig. 2), and quantitatively by the

correlation function and mean overdensity plots. However, the

random walk approach adopted here yields shorter computational

time than the Gaussian convolution method adopted by the above

authors, resulting in a gain over the simulation by a factor of 2–3.

When the ‘interaction’ term V1 is set in, the evolution of the

velocity field in the EA approach is successful in reproducing most

of the features emerging from the N-body simulations, including

the fragmentation of large-scale structures into dense lumps. The

correlation function an the mean overdensity as a function of scale

resulting from our EA model agrees remarkably well with those

from the N-body, even at small scales (see Fig. 5). At larger scales

and for underdense regions, our extension of the Zel’dovich Ansatz

c ¼ 2c leaves invariant the satisfying agreement of the

Zel’dovich and adhesion approximations with the outcomes of

the simulations; this is at variance with other semi-analytic

approaches to LSS (like the Lagrangian perturbation theory to

second order Bouchet et al. 1995).

The above results indicate that the lowest order term V1 in the

equation for the velocity potential is effective in capturing some

relevant features of the non-linear evolution of the velocity field.

The physical meaning of such a term, as compared with the higher

order one V2 entering equation (14), is straightforward. Inspection

of equation (14b) and of the Hopf–Cole transformation j ¼
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Figure 5. The two-point correlation function is shown in the top panels for the N-body simulations (solid line), the EA (dashed line) and the AA (dotted line).

The bottom panels show the rms fluctuations of the density smoothed with a Gaussian of radius r. The latter is expressed in pixels units; different lines

correspond to the models as above. The left-hand column refers to z ¼ 1, while the right-hand column refers to z ¼ 0.
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expð2c/2nÞ shows that such a term corresponds to considering the

effect of the time average of the velocity potential in the course of

evolution. Thus the solutions presented here correspond in a sense

to ‘mean field’ solutions. It is not surprising, then, that these

constitute the lowest order correction to the ‘free-particle’

behaviour, corresponding to the AA. The consideration of higher

order terms in V(j) would then correspond to a consideration of the

detailed effect of each single particle on the evolution of

the Eulerian velocity potential. This effect, of course, is related to

the detailed history of each particle, and correspondingly it is

expressed by non-local terms which involve integrals over the

particle trajectory, like those in the term V2 entering equation (14).

7 D I S C U S S I O N

As recalled above, the dynamics described by the EA through the

time-evolving velocity potential derived from equations (14a) and

(14b) allows us to improve the description of the high-density

regions, more deeply evolved in the non-linear regime. This improve-

ment allows us (i) to extend the insight on the physics of LSS to

include the evolution of higher density regions, and (ii) to extend the

cosmological applications of the ZA and EA to a larger density range,

including overdensities up to (at least) d , 10 (see Fig. 5) where the

EA (at variance with ZA and AA) still provides a satisfactory

description. We shall now discuss the above two points in turn.

Previous works based on N-body simulations (Melott, Weinberg

& Gott 1988) and on implementations of the AA (Weinberg &

Gunn 1990a) suggested that on sufficiently large scales the process

of non-linear gravitational evolution may be viewed as a smoothing

process on the initial density field; indeed, the results for the AA

(Weinberg & Gunn 1990a) showed that the density field resulting

at a given cosmic time is well approximated by the initial density

field smoothed over a scale corresponding to <Dx/3, where Dx is

the average particle displacement at that time (i.e., the average

comoving distance that a particle has moved from its initial

position). The AA allows us to pin down the origin of such a

behaviour; indeed, for large scales where the AA is a satisfactory

approximation, the diffusion term in the Burgers equation for the

velocity field (or equivalently in equation 1 for the velocity

potential) has the effect that the velocity field at a point

incorporates the contributions from the surrounding patch of

initial conditions. This is explicitly shown by the corresponding

form of the velocity potential (equations 3 and 4) and by the

random walk solution illustrated in Fig. 1; as noted by Weinberg &

Gunn (1990a), the non-linear Hopf–Cole transformation c ! j in

the solution of the Bernoulli equation (1) amplifies gradients so

that the diffusive smoothing has the greater impact where it is most

needed. The latter point is shared by the EA; however, the

graphical illustration (Fig. 1) of the EA solution for the velocity

field shows that, for sufficiently large times at the onset of the term

V1, a second process overlaps the diffusive smoothing in

determining the evolution of LSS; in fact, the velocity field at a

point is now influenced by the value of the field at times closer to

the present, as shown in detail in Fig. 1. Thus, regions with larger

overdensities (corresponding to larger velocities in the surround-

ings) acquire a larger and larger role in driving the evolution of c,

and this has the effect of enhancing the inhomogeneities in the

density field. This is apparent also from the path-integral solution

in equation (20), which shows that the random diffusion term [the

‘kinetic’ part of the action /ðdb/dsÞ2 which corresponds to the

‘smoothing’ mode] is now complemented by the potential term

V(j); of all the paths that contribute to the integral, those passing

through maxima of V(j) (at evolved times) make the dominant

contribution to the integral. Thus the potential term in equation

(20) acts like a ‘selection’ term (in contrast with the ‘smoothing’

term driving the whole dynamics in the AA), which progressively

weights the more non-linear regions in determining the evolution

of j. It is this latter effect which drives the fragmentation of

filaments into several knots (see Figs 2–4) observed at late times in

N-body simulation and missing from the AA dynamics. Inspection

of Fig. 5 shows that such a second mode in the LSS evolution

begins to efficiently overlap to the diffusive smoothing already at

z , 1. Thus the non-linear gravitational evolution can be viewed as

smoothing process of the initial conditions for d , 5, as suggested

by previous works on the AA; for larger overdensities at z , 1 the

velocity gradient induced by small-scale overdensities overlaps to

the smoothing mode so that particles flow along the filaments to

enhance small-scale overdensities, partially breaking the extended

structures into dense knots. A finer description of such process

includes the effect of each particle trajectory in the modification of

the velocity field, and corresponds to the term V2 in equation (14).

As to the investigation of cosmological problems, the EA can be

used to complement N-body simulations in several ways: first, the

shorter computational time taken by the EA to run allows a more

extensive exploration of the parameter space in many astrophysical

problems; second, the EA can be used in the development or testing

phase of investigation techniques which require a large number of

simulations; third, it can be used to estimate the probability for a

given configuration (both in density and in velocity) to occur, a

problem which may also require running a large number of

simulations. It must be noticed that the above advantages are

shared with other approximations like the ZA and the AA;

however, the EA allows to describe a wider range of overdensities

(see, e.g., Fig. 5), thus extending the fields of investigation and

allowing us to address additional problems. A first example is

constituted by the study of Lya regions and, in general, by the

comparison of theoretical predictions with the observations

concerning the intergalactic medium. Indeed, several authors

have used the ZA (with an appropriate smoothing on initial

conditions) to study the distribution of Lya column densities (Hui,

Gnedin & Zhang 1997; Gnedin & Hui 1998); the density and

velocity field derived from ZA were related to the gas density,

temperature and composition by an independently derived

equation of state. The resulting distribution of Lya column density

can be compared with observations, and a large variety of

parameters (concerning the cosmology, the equation of state of the

gas, the reionization epoch and the ionizing radiation) can explored

through the use of the fast ZA algorithm. However, such an

approach could be applied only for density contrast d , 5

(corresponding to column densities , 1014:5 cm22Þ due to the

break down of the ZA (and also of the AA, as shown by Fig. 5) at

higher density contrast. In this context, the EA could extend the

range of such investigations to larger density contrast and hence to

larger column densities. In this context, such investigations could

be further extended to include (at least partially) baryons at

temperatures ,105 –106 K residing in higher density contrast

d * 10, which could constitute a relevant (if not major) fraction of

all existing baryons (see, e.g., Cen & Ostriker 1999). While a full

treatment of them requires full hydrodynamical simulations

including shock-heating, preliminary studies and parameter

exploration concerning the statistics of column densities of such

gas could be performed through the EA. Once a smaller set of

plausible models is identified with this technique, full hydro-

dynamical simulations can be run. Further examples of
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cosmological studies through the EA can be constituted by the

computation of the density distribution produced in the mildly non-

linear regime extending to density d , 10 in a variety of

cosmological conditions; this enters many analytical or semi-

analytical computations concerning the thermal and chemical state

of the intergalactic medium (which are also being included in semi-

analytic models of galaxy formations; see Benson et al. 2001).

Additional applications concern the extension to larger overdensities

of a reliable velocity–density relation (widely investigated with the

use of the ZA up to densities d & 4; see Nusser et al. 1991, and also

Weinberg & Gunn 1990b), particularly used for the analysis of

large-scale flows and for the inverse problem of deriving the

velocity field corresponding to observed galaxy distribution.

Besides complementing the N-body simulations in evolving

numerically a dark matter field, the compact, analytical form

(equation 14) for the evolution of the velocity field constitutes a

promising way to study directly and analytically relevant scaling

properties for the collisionless fluid. In particular, it is known that

the solution of equations similar to (14) with a random source term

V show interesting fractal (Brax 1992) and intermittency (Gärtner

& Molchanov 1992) properties. Indeed, an approach involving a

diffusion equation with a source term for the velocity field has been

used by Jones (1999) to relate the baryonic velocity field (the one

following the diffusion equation in such model) to the dark matter

potential (the source term) which, in this approach, is given as an

input. The intermittency and fractal properties of the baryonic

velocity field in this model (which give rise to nice scaling

properties of the resulting galaxy distribution) are probably

features which are shared by the velocity field in our model. While

the investigation of such issues is more complicated in the EA than

in the AA or ZA due to the more complex form of the velocity

potential, it is nevertheless interesting to study the effects of the

non-linear source term introduced by the EA in the Burgers

equation on the fractal and intermittency properties of the resulting

velocity field, since this would provide useful analytical tools to

characterize the growth of LSS in a more evolved non-linear stage

than that probed by previous approximations. The investigation of

such a point will be the subject of a later paper.
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A P P E N D I X A

The quantity Qa ¼
Ð
CaðxÞ

Dln j da0 evolves according to the

following relation

QaþdaðxÞ ¼ QaðzÞ þ Dln jðzÞ da; ðA1Þ

where z is the particle position at the previous time in the trajectory

C(x), so that z ¼ x 2 uaðzÞ da. For small time increments da, the

velocity in z is given by

uaðzÞ ¼ uaðxÞ½1 2 7·uaðxÞ da�: ðA2Þ

Substituting for z and for ua(z) into equation (A1), one obtains

QaþdaðxÞ ¼ QaðxÞ2 ½7Q·ua�ðxÞ daþ Dln jðxÞ daþ Oðda 2Þ; ðA3Þ

from which, after substituting u ¼ 7ð22n ln jÞ (by definition of j),

equation (12) follows.

As for equation (13), we note that

x ¼ q 2 2n

ða

a0

7ln j½xðq; a0Þ� da0 ðA4Þ
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From this it follows that

Dln j½xðq; aþ daÞ� ¼ Dln j q 2 2n

ða

a0

7ln j½xðq; a0Þ� da0
�

2 2n7ln j½xðq; aÞ� da

�
: ðA5Þ

For small displacements 22n7ln j½xðq; aÞ� da along the particle

trajectory, the expansion of the argument of the right-hand side yields

Dln j½xðq; aþ daÞ� ¼ Dln j½xðq; aÞ�

2 2n½7ðDln jÞ·7ln j�½xðq; aÞ� da; ðA6Þ

whose iteration leads to equation (13).
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