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Abstract

We show that the measured abundance of ultra-faint lensed galaxies at »z 6 in the Hubble Frontier Fields (HFF)
provides stringent constraints on the parameter space of (i) dark matter models based onkeV sterile neutrinos; (ii)
“fuzzy” wavelike dark matter models, based on Bose–Einstein condensates of ultra-light particles. For the case of
sterile neutrinos, we consider two production mechanisms: resonant production through mixing with active
neutrinos and the decay of scalar particles. For the former model, we derive constraints for the combination of
sterile neutrino mass nm and mixing parameter qsin 22( ) which provide the tightest lower bounds on the mixing
angle (and hence on the lepton asymmetry) derived so far by methods independent of baryonic physics. For the
latter we compute the allowed combinations of the scalar mass, its coupling to the Higgs field, and the Yukawa
coupling of scalar to sterile neutrinos. We compare our results to independent existing astrophysical bounds on
sterile neutrinos in the same mass range. For the case of “fuzzy” dark matter, we show that the observed number
density»1 Mpc3 of high-redshift galaxies in the HFF sets a lower limit .y

-m 8 10 22· eV (at the 3-σ confidence
level) on the particle mass, a result that strongly disfavors wavelike bosonic dark matter as a viable model for
structure formation. We discuss the impact on our results of uncertainties due to systematics in the selection of
highly magnified, faint galaxies at high redshift.

Key words: dark matter – galaxies: abundances – galaxies: formation

1. Introduction

Understanding the nature of the dark matter (DM) comp-
onent of the universe constitutes a key issue in fundamental
physics and in cosmology. Over the last two decades, the
formation and the growth of cosmic structures has progres-
sively adopted the cold dark matter (CDM) paradigm as a
baseline(Peebles 1982; Blumenthal et al. 1984). This envi-
sages DM particles to be characterized by thermal velocities
small enough to produce negligible free streaming on scales
relevant to structure formation. Typically, this corresponds
either to assuming DM particles to be massive ( >m 0.1 GeVX )
or to be constituted by condensates of light axions (with mass
~ - -10 10 eV5 1– ). Basic motivations for such a scenario are its
simple properties (the corresponding power spectrum has a
self-similar power law behavior in the whole range of mass
scales involved in galaxy formation) and the fact that particles
with mass and cross sections characteristic of the weak scales
(weakly interacting massive particles, WIMPs, with masses

~m 100 GeVX ) produce approximately the correct abundance
of DM when they freeze-out of equilibrium in the early
universe. On the other hand, extensive studies of structure
formation showed that the CDM model provides an excellent
baseline to explain the properties of large-scale structures and
of galaxies on a huge range of mass scales ranging from

»M 1016 to » :M M109 (see, e.g., Diemand & Moore 2011,
for a review).

However, to date, both direct(see, e.g., Aprile et al. 2012, 2016;
Akerib et al. 2014) and indirect(see, e.g., Adriani et al. 2013;
Ackermann et al. 2015) CDM detection experiments have failed to
provide a definite confirmation of such a scenario. Also, no
evidence for CDM candidates with mass 10 10 GeV2 4– has been

found in experiments at the LHC(e.g., Aad et al. 2013), while
experiments aimed to detect axions as DM components have
produced no evidence in the explored portion of the parameter
space(see Graham et al. 2015; Marsh 2016). On the structure
formation side, several critical issues are affecting the CDM
scenario at the mass scales of dwarf galaxies ( »M 10 107 9– :M ).
These are all connected to the excess of power in the CDM power
spectrum at such scales compared to a variety of observations, and
include: the excess DM density of the inner regions of dwarf
galaxies compared to the observed cored profiles(see de Vega
et al. 2014), the over-abundance of faint dwarfs around our Galaxy
and in the Local Group(see, e.g., Lovell et al. 2012) as well as in
the field(Maccio et al. 2012; Menci et al. 2012; Papastergis
et al. 2015), the excess of massive satellite DM halos with virial
velocities . -V 20 km svir

1 relative to the number of observed
bright dwarf galaxies(Boylan-Kolchin et al. 2011), and—most of
all—the over-prediction of the abundance of field dwarfs with

» -V 40 60 km svir
1– (Klypin et al. 2015).

While a refined treatment of baryonic effects entering galaxy
formation (in particular feedback from supernovae) has been
proposed to solve or at least alleviate the above problems(see,
e.g., Governato et al. 2012, 2015; Di Cintio et al. 2014), the
combination of astrophysical issues with the lack of direct or
indirect detection of candidate particles has stimulated interest
toward different DM scenarios, characterized by power spectra
with suppressed amplitude at small mass scales ( 1M 10 108 9–
:M ) with respect to the CDM case. In fact, several groups have

started to investigate galaxy formation in a number of
alternative models, such as self-interacting DM(Rocha
et al. 2013; Vogelsberger et al. 2014), decaying DM(Wang
et al. 2014), late-forming DM(Agarwal et al. 2015), atomic
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DM(Cyr-Racine & Sigurdson 2013), and DM interacting with
dark radiation(Buckley et al. 2014; Chu & Dasgupta 2014).

In this framework, a specific focus has been given to warm
dark matter (WDM) scenarios, which assume DM to be
composed by particles with masses mX in thekeV range. Their
larger thermal velocities (corresponding to larger free-stream-
ing lengths) suppress structure formation at scales =M 107–
109 :M , depending on the exact value of mX (since a
thermalized species has no memory of the details of its
production). While WDM candidates may result from the
freeze-out of particles initially in thermal equilibrium in the
early universe(like, e.g., gravitinos, see Steffen 2006 for a
review), a similar suppression at these scales can be obtained
by a variety of models featuring particles in the keV mass range
with non-thermal spectra, like sterile neutrinos. Note that, in
the case of non-thermal spectra, the production mechanism is
essential in determining the suppression of the power spectra
with respect to CDM. The shape of the power spectra are—
although even that only qualitatively—somewhat similar to
thermal WDM cases only for specific regions of the parameter
space of the assumed production model, since a non-thermal
spectrum cannot be associated with a temperature straightfor-
wardly. Thus, to provide accurate limits to the mass of a non-
thermal candidate, a detailed exploration of the parameter space
of the selected models has to be performed. In this work, we
tackle this task focusing on models of keV sterile neutrinos,
which have received particular interest in the literature in recent
years (Adhikari et al. 2016). This is due to both solid
fundamental physics motivations (right-handed neutrinos
constitute a natural extension of the Standard Model to provide
mass terms for active neutrinos, see Merle 2013) and to the fact
that such particles constitute the simplest candidates (see, e.g.,
Abazajian 2014) for a DM interpretation of the potential X-ray
line in stacked observations of galaxy clusters and in the
Perseus cluster(Boyarsky et al. 2014; Bulbul et al. 2014). In
fact, in the presence of a tiny admixtures qsin 22( ) with active
neutrinos, the decay of sterile neutrinos can result in photon
emission at energies close to nm 2. The non-detection of such
a line in galaxies, dwarf galaxies, or the Milky Way (see, e.g.,
Sekiya et al. 2015; Adhikari et al. 2016; Jeltema &
Profumo 2016; Riemer-Sorensen 2016, for an extended
discussion) yields effective upper limits on the mass of sterile
neutrinos for each value of the mixing angle in the range

- -q- -10 sin 2 1013 2 9( ) (Canetti et al. 2013; Ng et al. 2015;
Tamura et al. 2015), which rule out sterile neutrino models
based on the non-resonant production mechanism of Dodelson
& Widrow (1994).5

However, general lower mass bounds (arising from phase
space density of nearby dwarf galaxies) are rather loose,
yielding a model-independent limit .nm 0.4 keV (Boyarsky
et al. 2009), and leave a major portion of the parameter space
largely unconstrained, in scenarios in which sterile neutrinos
are resonantly produced (RP models) in the presence of a
lepton asymmetry L in the background medium (as proposed
by Shi & Fuller 1999). They can, however, be significantly
tightened when the information available from the production
mechanism is taken into account (Merle & Schneider 2015;
Schneider 2016), thereby strongly pushing such scenarios.

Other settings, where sterile neutrinos are produced by decays
of, e.g., scalar particles (see a few concrete examples in
Shaposhnikov & Tkachev 2006; Kusenko 2006; Petraki &
Kusenko 2008; Klasen & Yaguna 2013; Merle et al. 2014;
Merle & Totzauer 2015; Adulpravitchai & Schmidt 2015;
Shakya 2016; König et al. 2016), are largely unconstrained by
present X-ray observations, since they could in principle
operate even without active–sterile mixing. Note that the
corresponding parent in such scalar decay (SD) models must
themselves be coupled to the Standard Model, typically via
the Higgs sector. Thus, the key free parameters in such
settings are the Higgs portal coupling and the Yukawa
coupling between the scalar and the sterile neutrinos.6 For
more complicated spectra, they can even look entirely
different from thermal cases and exhibit qualitatively new
features such as more than one momentum scale, long tails, or
similar.
Another proposed solution to the small-scale problems in

galaxy formation is based on Bose condensates of ultra-light
(pseudo) scalar field DM with mass »y

-m 10 22 eV(Hu et al.
2000; Marsh & Silk 2014; Schive et al. 2014), which may be
in the form of axions arising in string theory(Arvanitaki
et al. 2010) or other extensions of the Standard Model of
particle physics(see Kim 1987 for a historic review). In these
settings, DM particles can be described by a single coherent
wave function with a single free parameter mψ, the DM
particle mass. The quantum pressure arising from the de
Broglie wavelength produces a steep suppression of the
transfer function below the corresponding Jeans
length (Khlopov et al. 1985; Hu et al. 2000), making this
scenario a viable alternative solution to the small-scale
problems in galaxy formations (see Woo & Chiueh 2009;
Mielke & Perez 2009; Chavanis 2011; Marsh & Silk 2014;
Bozek et al. 2015; Harko & Lobo 2015; Madarassy &
Toth 2015; Martinez-Medina et al. 2015). In fact, the soliton
solution allows for cored inner density profiles in dwarf
galaxies, while the substructures in DM halos, arising from
fine-scale, large-amplitude cellular interference, would yield a
suppressed abundance of satellite compared to the CDM
case (Du et al. 2016). For such models, often referred to as
“fuzzy” DM, the parameter space corresponding to the
different possible power spectra is rather simple, since it
depends only on the particle mass mψ. This is expected to be

1 ´y
-m 1.2 10 eV22 (see, e.g., Marsh & Pop 2015) to

resolve the cusp–core problem (without recourse to baryon
feedback, or other astrophysical effects), but values up to

» ´y
-m 4 10 eV22 have been considered in previous

works (see Schive et al. 2016).
The abundance of low-mass cosmic structures provides an

important key to either restrict the range of allowed sterile
neutrino production models, or rule out currently allowed DM
scenarios. In the case of thermal relic WDM particles, the one-to-
one correspondence between the WDM particle mass and the
suppression in the power spectrum at small scales has allowed us
to derive limits on mX by comparing the predictions from N-body
WDM simulations or semi-analytic models with the abundance of
observed ultra-faint satellites. On this basis, different authors have
derived limits ranging from .m 1.5 keVX (Lovell et al. 2012) to

5 Note that, contrary to the claims tracing back to the early references (Dodelson
& Widrow 1994; Colombi et al. 1996), the spectrum resulting from non-resonant
production is non-thermal (Merle et al. 2016), rather than being proportional to a
Fermi–Dirac distribution multiplied by a suppression factor.

6 Again, non-thermal DM models can suppress so much power at large scales
that they are ruled out by the observed cosmic structure. However, the term
“hot dark matter” should be used with care also in this case, since a non-
thermal spectrum cannot be associated with a temperature straightforwardly.
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.m 1.8 keVX (Horiuchi et al. 2014), .m 2 keVX (Kennedy
et al. 2014), and .m 2.3 keVX (Polisensky & Ricotti 2011);
relevant constraints have also been obtained for the parameter
space of RP sterile neutrino models (Schneider 2016), in that latter
case also taking into account the actual shape of the distribution
functions (and, thus, not using a WDM approximation to a non-
thermal case). Note that, however, such a method is appreciably
sensitive to the assumed completeness corrections (see the
discussion in Abazajian et al. 2011; Schultz et al. 2014), to the
treatment of sub-halo stripping, and to the assumed values for the
DM mass of the host halo and of the satellites. At higher redshifts,
»z 6, a limit 2m 1 keVX has been derived from the UV

luminosity functions of faint galaxies ( » -M 16UV ) in Schultz
et al. (2014); a similar approach by Corasaniti et al. (2016) yields

2m 1.5 keVX . The same method has been applied to fuzzy DM
models in Schive et al. (2016) (see also Corasaniti et al. 2016),
deriving a consistency of such a model with the observed galaxy
abundances for the whole particle mass range,

- - ´y
- -m10 eV 4 1022 22. Since these approaches are based

on the comparison between the observed luminosity functions and
the predicted mass function of DM halos in different WDM
models, the delicate issue in these methods is their dependence on
the physics of baryons, determining the mass-to-light ratio of faint
galaxies. However, to a lesser extent, uncertainties in the baryonic
physics also affect (Viel et al. 2013; Garzilli et al. 2015) the tighter
constraints achieved so far .m 3.3 keVX for WDM thermal
relics, derived by comparing small scale structure in the Lyα
forest of high- resolution ( >z 4) quasar spectra with hydro-
dynamical N-body simulations (Viel et al. 2013); for a general-
ization of this method to sterile neutrinos models, see
Schneider (2016).

To derive robust limits on alternative DM scenarios, it is
crucial to bypass the uncertainties related to the physics of
baryons involved in galaxy formation, in order to get rid of the
degeneracies between the effect of baryons and of the DM
power spectrum in suppressing the number of observed low-
mass structures. With this aim, Menci et al. (2016a, 2016b)
have exploited the downturn of the halo mass distribution
f M z,( ) in models with suppressed power spectra, which yields
a maximum number density f of DM halos in the cumulative
mass distribution which in turn depends on the adopted DM
model. Since luminous galaxies cannot outnumber DM halos,
an observed galaxy density f f>obs would rule out the
adopted DM model independently of the baryonic processes
determining the luminous properties of galaxies. Such a
method, first applied to lensed galaxies at z= 10 by Pacucci
et al. (2013) and to galaxies at z= 7 in the Hubble Deep Field
by Lapi & Danese (2015), has acquired an increased potential
with the first results of the Hubble Frontier Field (HFF)
programme. By exploiting the magnification power of gravita-
tional lensing produced by foreground clusters, HFF has
enabled the detection of galaxies fainter than the detection limit
of the Hubble Deep Field at .z 6 (see, e.g., Atek et al. 2015;
Ishigaki et al. 2015; Laporte et al. 2015; Castellano et al. 2016),
to reach unprecedented faint magnitudes = -M 12.5UV in the
measurement of the luminosity function of galaxies at z= 6
(Livermore et al. 2016). The large number density

.f -1.3 Mpcobs
3 (at the 2-σ confidence level) corresponding

to the observed luminosity function has allowed us to set a
robust lower limit .m 2.5 keVX (at 2-σ) to the mass of
thermal relic WDM particles. This constitutes the tightest

constraint derived so far on thermal WDM candidates
independent of the baryon physics involved in galaxy
formation.
Given the potential and the robustness of this method, it is

only natural to apply it to different sterile neutrino production
models, which offer a natural framework for physically
motivated DM candidates as discussed above. In this paper,
by requiring the maximum number density attained in a given
DM model to be larger than the observed HFF value, we will
provide unprecedented constraints on the parameter space for
different sterile neutrino production mechanisms. In particular,
the combinations qnm sin 22– ( ) defining the different RP
models will be explored to significantly restrict the allowed
regions in combination with existing bounds, while for SD
models we will set limits on the different combinations of free
parameters, i.e., the scalar mass, the Higgs portal coupling, and
the Yukawa coupling between the scalar and the sterile
neutrinos. We shall then turn to apply the method to the fuzzy
DM scenario to provide lower limits on the ultra-light pseudo-
axion mass mψ which will turn out to rule out this class of
models.
The paper is organized as follows. In Section 2 we provide a

description of the method. In Section 3 we briefly summarize
the basic features of the DM models we are probing in this
work, i.e., the RP and the SD production models for sterile
neutrinos, and the fuzzy DM model. In Section 4 we present
and discuss the results, while Section 5 is devoted to our
conclusions.

2. Method

To derive constraints on the parameter space of the sterile
neutrino (RP and SD) DM models and of the fuzzy DM model,
we compute the maximum number density of DM halos f
expected at redshift z= 6 for each point of the parameter space,
and compare it to the observed number density fobs of galaxies
at the same redshift obtained from the galaxy luminosity
function measured by Livermore et al. (2016). Since the
observed galaxies cannot outnumber their host DM halos, the
condition .f fobs determines the set of parameters admitted
for each DM model.
The method is based on the drop of the differential halo mass

function fd dM at small masses in models where the power
spectrum is strongly suppressed with respect to CDM at masses

1 :M M10 107 9– . As a consequence, the corresponding
cumulative halo mass function ò f

¥
dm d dm

M
( ) saturates to

a maximum value f when the integral is extended down to
progressively smaller values of M. This provides a maximum
value for the number density of DM halos regardless of the
underlying mass–luminosity relation, and—hence—is comple-
tely independent of the baryon physics entering galaxy
formation.
In the following, we describe our computation of the

observed number density fobs and or the maximum predicted
number density f, in turn.

2.1. The Galaxy Number Density at z= 6
from Observed Luminosity Functions

For the observed number density fobs, we take the value
derived integrating the galaxy luminosity function at z= 6
down to the faintest bin = -M 12.5UV (Livermore

3
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et al. 2016). The luminosity function was estimated from
objects in the Abell 2744 and MACS 0416 cluster fields,
selected on the basis of their photometric redshift. The
effective volume sampled by the observations was computed
from simulations of 5×105 mock galaxies with realistic
colors and shapes, using all lensing models available for the
two fields in the MAST archive. The simulated sources are
added to the images and analyzed with the same procedure
used for real sources, including photometric redshift analysis,
in order to estimate the flux-dependent selection complete-
ness. The resulting fiducial luminosity function with the
corresponding 1-σ uncertainties in each magnitudebin is
estimated on the basis of the median magnification for each
galaxy in the sample and is reported in Figure 10 of
Livermore et al. (2016). From this we have derived the
observed cumulative number density fobs (and its confidence
levels) through a Monte Carlo procedure (Menci et al. 2016a).
We extracted random values F Mrandom UV( ) of the luminosity
function in each magnitude bin according to a Gaussian
distribution with variance given by the error bar in Livermore
et al. (2016). Thus, for each simulation we produced a new
realization of the luminosity function at z= 6. From this, a
cumulative number density frandom was derived by summing
up the values of F Mrandom UV( ) in all the observed magnitude
bins in the range - -- -M22.5 12.5UV . We carried out

=N 10sim
7 simulations to compute the probability distribution

function (PDF) of the cumulative number density frandom. We
obtain a median value f =-log Mpc 0.54obs

3 , while from the
relevant percentiles of the PDF we derive lower bounds 0.26,
0.01, and −0.32 at the 1, 2, and 3-σ confidence levels,
respectively. We have checked that the median value of the
differential luminosity function Frandom obtained from our
simulations is consistent (within 3%) with the best fit value of
the luminosity function obtained by Livermore et al. (2016).
Note that such a procedure assumes that each magnitude bin is
uncorrelated with the adjacent ones (as indeed is done in both
the Livermore 2016 and the Bouwens 2016 analysis). In case
of correlated bins larger errorbars are expected for blank field
observations (see the discussion in Castellano et al. 2010), but
a quantitative estimate of such an effect for measurements
involving lensing magnification is lacking; this would
constitute an interesting improvement over the present
treatment.

Note that the measurements of the luminosity functions
derived by Livermore et al. (2016) are particulary delicate at
the faint end where large lensing magnifications are involved.
Indeed, Bouwens et al. (2016b) adopted a different estimate of
the impact of lensing magnifiction, finding not only a lower
median value for the number density of galaxies at

= -M 12.5UV compared to Livermore et al. (2016), but also
larger errorbars. In fact, assuming the luminosity functions in
Bouwens et al. (2016) we find for the maximum number
density a median value f = --log Mpc 0.25obs

3 , with lower
bounds −0.47, −0.62, and −0.9 (at the 1, 2, and 3-σ
confidence levels), yielding looser limits on the parameter
space of DM models. We discuss the impact of assuming such
values for fobs in Section 5. In the same section we present a
critical discussion of the systematics associated with the
measurements of highly magnified sources.

2.2. The Maximum Number Density of Halos in Dark Matter
Models with Suppressed Power Spectra

The computation of the differential halo mass function
fd d Mlog( ) in sterile neutrino models is based on the

standard procedure described and tested against N-body
simulations in Schneider et al. (2012, 2013), Benson et al.
(2013), and Angulo et al. (2013). Our computation has been
tested against simulations in Menci et al. (2016b) and presented
in Menci et al. (2016a). Here we summarize the key points of
the computation and we refer to the above papers for details.
The key quantity entering the computations is the variance of

the linear power spectrum P(k) of DM perturbations (in terms
of the wave-number p=k r2 ). Its dependence on the spatial
scale r of perturbations is given by

s
p s

= -
d
d r r

P r
r

ln
ln

1
2

1
. 1

2

2 2 3

( )
( ) ( )

( ) ( )

Here we have used a sharp-k form (i.e., a top-hat sphere in Fourier
space) for the window function W(kr) relating the variance to the
power spectrum /òs p=M dk k P k W kr 22 2 2( ) ( ) ( ) ( )—see
e.g., Schneider et al. (2013) for other common choices. The
normalization c entering the relation between the halo mass

p r=M cr4 33( ) and the filter scale r must be calibrated
through simulations (here, r is the background density of the
universe). All studies in the literature yield values for c in the
range =c 2.5 2.7– (see, e.g., Angulo et al. 2013; Benson
et al. 2013; Schneider et al. 2013). The effect of such an
uncertainty will be considered in deriving the constraints
presented in Section 4.
For the sterile neutrino RP and SD models, the power

spectrum is computed directly by solving the Boltzmann
equation after computing the distribution function for all points
of the parameter space, as described in detail in Section 3.
Then, the differential halo mass function (per unit Mlog ) based
on the extended Press & Schechter approach (Bardeen
et al. 1986; Benson et al. 2013; Schneider et al. 2013) reads

f r
n

s
=

d
d M M

f
d
d rln

1
6

ln
ln

. 2
2

( )
( ) ( )

( )
( )

Here, n d sº tc
2 2( ) depends on the linearly extrapolated

density for collapse in the spherical model, d = D t1.686c ( ),
and D(t) is the growth factor of DM perturbations. We
conservatively assume a spherical collapse model, for which

n n p n= -f 2 exp 2( ) ( ). Assuming an ellipsoidal collapse
model would yield a lower halo mass function at the low-mass
end and—hence—even tighter constraints on the DM parti-
cle mass.
For sterile neutrino DM, yielding power spectra suppressed

at small scales compared to CDM, the resulting differential
mass functions, see Equation (2), are characterized by a
maximum value at masses close to the “half-mode”
mass (Schneider et al. 2012; Angulo et al. 2013; Benson
et al. 2013), the mass scale at which the spectrum is suppressed
by 1/2 compared to CDM. This function depends strongly on
the sterile neutrino mass; for RP models it also depends on the
lepton asymmetry assumed and, hence, on the resulting mixing
angle θ; typical power spectra in such models yield half-mode
masses ranging from » :M M10hm

10 to » :M M10hm
8 .

Correspondingly, the cumulative mass functions saturate to a

4
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maximum value f f»z M z,hm( ) ( ), defining the maximum
number density of DM halos associated with the considered
power spectrum.

A similar behavior characterizes the halo mass functions in
the fuzzy DM case. Dedicated N-body simulations (Schive
et al. 2016) yield for the differential mass function the form

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

f f
= +

- -
d

d M
d

d M
M
Mln ln

1 , 3
CDM 0

1.1 1.2

( ) ( )
· ( )

where fd d Mln CDM∣ ( )∣ is the halo mass function in the CDM
scenario computed after Equations (1) and (2), assuming for P
(k) the CDM form given in Bardeen et al. (1986). The auxiliary
mass scale = ´ y

- -
:M m M1.6 10 10 eV0

10 22 4 3( ) , deter-
mining the suppression of the halo mass function compared to
the CDM case, depends on the fuzzy DM candidate mass, and
it plays a role analogous to the half-mode mass scale for sterile
neutrino models.7 For . ´y

-m 1.5 10 eV22 the uncertainties
in the above expression for the halo mass functions are below
10%(Schive et al. 2016) and will be considered when
comparing with observed galaxy number densities.

For each DM model considered, the method described above
allows us to exclude the region of the parameter space yielding
f f>obs . In the next section, we briefly recall the properties of
the parameter space we explore for the different DM models we
consider.

3. The Dark Matter Models: Power Spectra
and the Parameter Space

3.1. Sterile Neutrinos: Resonant Production
from Mixing with Active Neutrinos

The minimal setup for sterile neutrino DM is the production
via mixing with one or several active neutrino flavors. Active
neutrinos are weakly interacting and are therefore in thermal
equilibrium with other Standard Model particles in the early
universe (i.e., at temperatures above the MeV range). During
that epoch, the sterile neutrino abundance builds up gradually
via occasional oscillations from the active to the sterile sector.
Depending on mixing angle and particle mass, this freeze-in
production can lead to the right amount of sterile neutrino
DM(Dodelson & Widrow 1994) and is usually referred to as
the Dodelson–Widrow (DW) mechanism or non-resonant
production.8 Recent investigations based on combined limits
from structure formation and X-ray observations have ruled out
this production mechanism as the dominant contributor to the
DM sector(Seljak et al. 2006; Viel et al. 2006; Horiuchi
et al. 2014; Merle et al. 2016).

However, it was noticed early on that the active–sterile
oscillation may be enhanced by a resonance(Shi &
Fuller 1999), provided there exists a significant lepton
asymmetry L in the early universe. Such a resonance allows
for significantly smaller mixing angles θ, relaxing the tight
limits from X-ray observations. Furthermore, the resulting
particle momentum distributions may be colder and, therefore,
in better agreement with structure formation(Abazajian

et al. 2001). The Shi & Fuller (SF) or resonant production
mechanism of sterile neutrino DM(Shi & Fuller 1999), first
mentioned in Enqvist et al. (1990), also plays an important part
in the framework of the Neutrino Minimal Standard Model
(νMSM), which attempts to simultaneously solve the problems
of DM, non-zero neutrino masses, and baryon asymmetry by
solely adding three additional sterile neutrino flavors to the
Standard Model(see e.g., Asaka et al. 2005; Asaka &
Shaposhnikov 2005; Canetti et al. 2013), at the cost of
introducing a considerable fine tuning to produce a suitable
lepton asymmetry. Note that in the νMSM, there is an upper
limit for the allowed lepton asymmetry (see Canetti et al. 2013;
Laine & Shaposhnikov 2008; Shaposhnikov 2008) and hence,
there is a lower limit on the mixing angle even in the resonant
case if the production mechanism is to explain the total DM
abundance.
Since, for any given sterile neutrino mass, the mixing angle is

related to the adopted lepton asymmetry L, in this work we
describe the parameter space of RP sterile neutrino models in
terms of combinations of sterile neutrino masses nm and mixing
amplitudes qsin 22( ). Each one of such combinations corresponds
to a different momentum distribution, which strongly differs
from a generic Fermi–Dirac form(Abazajian et al. 2001). In
many cases such non-thermal momentum distributions are
characterized by colder mean particle momenta and by a larger
range of different momenta compared to the case of non-
resonant production. In terms of structure formation, this may
result in density perturbations which are more gradually
suppressed and survive down to smaller scales. This is, however,
only true for certain parts of the parameter space, while other
parts show similar (or even stronger) suppression of matter
perturbations compared to the case of non-resonant sterile
neutrino DM (for more details see Schneider 2016).
In this work the sterile neutrino momentum distributions of

RP are computed with the public code sterile-dm of
Venumadhav et al. (2016), which is an extension of earlier
works (Abazajian et al. 2001; Kishimoto & Fuller 2008;
Abazajian 2014). The computation is based on the Boltzmann
equation and includes detailed calculations of the lepton
asymmetry around the quark–hadron transition. Independent
calculations by Ghiglieri & Laine (2015) give similar results.
To obtain the power spectra, we use the publicly available
Boltzmann solver CLASS(Blas et al. 2011; Lesgourgues &
Tram 2011).

3.2. Sterile Neutrinos: Production from SD

Production from SD is described by a generic model that
invokes one real scalar singlet S and (at least) one sterile
neutrino N beyond the Standard Model. The scalar singlet
couples to the SM Higgs doublet Φ via a Higgs portal,

$ lÉ F F S2 , 42( ) ( )†

where λ is a dimensionless coupling. The interaction between
the scalar and the sterile neutrino is encoded in

$ É -
y

SN N
2

, 5c ( )

where y is a Yukawa-type coupling. In the most general case,
the complete model Lagrangian should contain terms for the
mixing between active and sterile neutrinos. We will, however,
neglect these terms, since non-resonant active–sterile mixing
cannot contribute significantly to the production of sterile

7 Instead of using the fitting function given by Schive et al. (2016), one could
also apply Equation (2) to the case of fuzzy DM. We use Equation (3) for
simplicity and because this guarantees full consistency with previous work on
fuzzy DM.
8 Note that the original proposal of this mechanism was prior to DW in
Langacker (1989); however, DW were the first to link it to DM.
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neutrinos when X-ray limits and limits of structure formation
are taken into account(Merle et al. 2016). Note that the
assumption of having only one right-handed neutrino is not
very restrictive, since most statements can easily be generalized
to the case of several right-handed states(König et al. 2016).

The free parameters of the SD model are the following.

1. The Higgs portal coupling λ, which determines the
production rate and the kinematics of the scalar from the
SM degrees of freedom of the Higgs doublet.

2. The Yukawa coupling y, which enters into the decay rate
of the scalar and hence controls how fast the scalar
decays into sterile neutrinos.

3. The mass of the scalar singlet, mS, which determines
which channels contribute to the production of scalars
and thereby finally to the abundance of sterile neutrinos.
If <m m 2S h , where mh is the mass of the physical
Higgs boson, thermal Higgses can directly decay into
scalars which increases the production drastically com-
pared to those cases where S can only be produced from
pairwise annihilation of SM degrees of freedom. For a
detailed discussion of the individual regimes, see Section
2 of König et al. (2016).

4. The mass of the sterile neutrino, denoted mν. This will
strongly influence the effects on cosmological structure
formation. Nonetheless we want to stress again that the
SD mechanism is highly non-thermal and that no
premature conclusion on the sterile neutrino being “too
hot” or “quasi-cold” should be made.

In this work, we will treat λ, y, and mS as free parameters.
For each triple of l y m, , S( ), we fix the mass of the sterile
neutrino by requiring it to reproduce the observed relic DM
abundance. We use the best-fit values published by the Planck
collaboration(Ade et al. 2016). We have scanned the
remaining three-dimensional parameter space by first solving
the homogeneous and isotropic Boltzmann equation governing
the production of sterile neutrinos in the early universe(König
et al. 2016). The resulting momentum distribution functions
and the value of mν inferred from the relic abundance constraint
then serves as an input to compute the linear power spectra,
again using the CLASS code(Blas et al. 2011; Lesgourgues &
Tram 2011).

Let us very briefly discuss the interplay between the Higgs
portal and the Yukawa coupling, in order to make the results
presented later on easier to digest: for small Higgs portal
couplings, the scalar itself is produced by freeze-in and is
always strongly suppressed compared to its would-be equili-
brium abundance. Physically, this means that back-reactions of
scalars into SM particles can be neglected completely. In this
case, the relic abundance of sterile neutrinos (and hence the
mass mν) are independent of the Yukawa coupling y for a fixed
pair lm ,S( ). Nonetheless, the Yukawa coupling controls the
production time of the sterile neutrinos, which is one of the key
factors for structure formation. When λ is large enough to
equilibrate the scalars, they will be subject to the well-known
dynamics of freeze-out. In this regime, sterile neutrinos can be
produced from scalars in equilibrium and from those decaying
after freeze-out. Accordingly, the number density of steriles
and thereby their mass mν can strongly depend on y even for
fixed lm ,S( ). Again, we refer the reader to König et al. (2016)
for a more detailed discussion.

3.3. Fuzzy DM

Fuzzy DM models assume the DM to be composed of a non-
relativistic Bose–Einstein condensate, so that the uncertainty
principle counters gravity below a Jeans scale corresponding to
the de Broglie wavelength of the ground state. In this case, the
suppression of small-scale structures and the formation of galactic
cores in dwarf galaxies is in fact entirely due to the uncertainty
principle, which counteracts gravity below the Jeans scale,
corresponding to a mass scale = -

:M M m10J
7

22
3 2 (Marsh &

Silk 2014), where º y
-m m 1022

22 eV. In such models, the DM
mass ym ultimately determines all the relevant DM physical
scales in structure formation, since it determines the scale below
which an increase in momentum opposes any attempt to confine
the particle any further. For example, the inner halo density
profiles in such models are well described by the stable soliton
solution of the Schrödinger–Poisson equation, which extends up
to a core radius of =y

- -
:r m M M1.6 1022

1 9 1 3( ) kpc (Schive
et al. 2014); at larger radii, the properties of fuzzy DM halos are
indistinguishable from CDM. Recent works comparing the
observed stellar-kinematical data of dwarf spheroidal galaxies
to the density profiles produced in fuzzy DM scenarios derived
upper limits for yr which translate into constraints on the DM
particle mass 1y

-m 1.5 10 22· (Marsh & Pop 2015; Calabrese
& Spergel 2016).
Since the DM particle mass is the only free parameter in

fuzzy DM models, comparing the mass distribution of
collapsed DM halos derived by Schive et al. (2016),
Equation (3), with the observed abundance of high redshift
galaxies as described in Section 2, provides straightforward
constraints on ym which can be compared with the existing
bounds mentioned above.

4. Results

We now proceed to present the constraints on the parameter
space of the different models presented above. In all cases we
adopted the Planck values for the cosmological parameters
(Ade et al. 2016).

4.1. Resonant Production of Sterile Neutrinos

In the case of resonantly produced sterile neutrino DM, we
choose the free parameters to be the mass, nm , and the mixing
amplitude qsin 22( ). For each combination of such quantities,
the lepton number L is fixed to the value required to yield the
right DM abundance. We first investigate the effect of varying
the mixing angle for a fixed sterile neutrino mass by focusing
on the case =nm 7.1 keV, corresponding to a sterile neutrino
whose decay could be at the origin of the potential 3.5keV line
in X-ray spectra of clusters. For such a case, the spectra
computed as presented in Section 3 yield the cumulative halo
mass functions shown in Figure 1 (left panel) for different
values of qsin 22( ) and compared with the observed number
density of galaxies with - -M 12.5UV in the HFF. Note that
the lines in Figure 1 constitute upper limits with respect to the
theoretical uncertainties discussed in Section 2. At small
masses, they saturate to a maximum number density f, which is
plotted in the right panel of Figure 1 as a function of qsin 22( ).
When compared with the observed number density of luminous
galaxies from the HFF (the upper shaded areas), requiring the
number density of DM halos to be larger than the observed
abundance .f fobs restricts the mixing angle in the range

- -q´ - -2 10 sin 2 1011 2 9( ) (at the 2-σ confidence level).
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When combined with existing upper bounds from X-ray
observations (hatched region in the right-hand panel of
Figure 1; see also Watson et al. 2012; Horiuchi et al. 2014),
this restricts the range of allowed values to the small
interval - -q´ - -2 10 sin 2 1011 2 10( ) .

To constrain different combinations of the free parameters
and to compare with previous results, we explore the whole
range of free parameters using a grid of values for both nm and

qsin 22( ). After computing the corresponding power spectra
(Section 3), the condition .f fobs leads to the exclusion
region in the plane qnm sin 22– ( ) shown in Figure 2.

Note that the exclusion plot is characterized by two excluded
regions. The upper region is bounded by the non-resonant DW
limit L=0 (the upper green curve in Figure 2) and is
characterized by non-thermal spectra with resonant peaks at
low momenta in the momentum distribution. This leads to a
strong suppression of the power spectrum yielding the upper
exclusion region. For lower values of qsin 22( ), the corresp-
onding increase of the lepton asymmetry (see Section 3.1)
shifts the amplitude and position of the resonance peaks toward
larger momenta so that the overall spectrum becomes cooler.
The corresponding predicted number density of galaxies f
becomes large enough to be consistent with the observed
values fobs, and results in the allowed region of Figure 2. When
the lepton number is further increased, i.e., for even smaller
values of qsin 22( ), the resonance peak in the momentum
distribution shifts to sufficiently high momenta to make the
spectrum warmer again, thus yielding the lower exclusion
region.

We exclude all models with a sterile neutrino mass below
-nm 5 keV and also large parts of the parameter space above.

The region around the 3.5keV line ( =nm 7.1 keV) is still
allowed, but restricted to a narrow range of values for

- -q- -11.3 log sin 2 102( ) . Our lower bounds on the
mixing angle extend over a wide range of sterile neutrino

masses up to »nm 11 keV, where the mixing angle is
constrained to the interval - -q- -12 log sin 2 11.42( ) . Our
results constitute the tightest lower bounds on the mixing angle
(and hence on the lepton asymmetry) derived so far by methods
independent of baryonic physics. For a large range of neutrino
masses, our results are very close to the limits obtained in

Figure 1. Left panel: the cumulative mass functions computed at z=6 for RP sterile neutrino models with =nm 7.1 keV for different values of the mixing angle θ
shown by the labels on the right. The shaded areas correspond to the observed number density of galaxies with - -M 12.5UV within within the 1-σ, 2-σ, and 3-σ
confidence levels. Right panel: the maximum value f (including theoretical uncertainties) of the predicted number density of DM halos at z=6 for the case with

=nm 7.1 keV as a function of the mixing angle θ. The upper shaded areas represent the observed number densities of galaxies with - -M 12.5UV within the 1-σ, 2-σ,
and 3-σ confidence levels. The vertical filled area corresponds to the range of values of qsin 22( ), consistent with the tentative line signal 3.5keV in X-ray
spectra(Boyarsky et al. 2014; Bulbul et al. 2014), with the hatched vertical area corresponding to present upper limits on qsin 22( ) from the absence of such a line in
the spectra of the Milky Way, and of dwarf galaxies from several authors, as given in Riemer-Sorensen (2016) and references therein.

Figure 2. Constraints on the RP sterile neutrino parameter space from our
method are represented as exclusion regions, with 3-σ and 2-σ limits
represented by darker and lighter colors. Our constraints are compared with
upper bounds from X-ray observations(as reported in Riemer-Sorensen 2016)
of the Milky Way and dwarf galaxies. Gray areas are excluded by current limits
on the abundance of DM(Ade et al. 2016). The green line corresponds to the
non-resonant DW case with vanishing lepton asymmetry L=0. We also show
as a dashed line the constraint obtained in Schneider (2016) from the
abundance of satellites in the Milky Way. The tentative line signal at
7.1keV(Boyarsky et al. 2014; Bulbul et al. 2014) is shown by the point with
errorbars.
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Schneider (2016) from the local abundance of Milky Way
satellites, using a counting based on the extended Press &
Schechter approach, calibrated to match the total abundance of
satellites measured in test cases through N-body simulations.
The similarity of these results is encouraging, given the
different method adopted and, most of all, the large difference
in cosmic times between the observations used to constrain the
models. However, it must be noted that estimates of the Milky
Way satellites depend on the assumed upper limit for the DM
halo of the Milky Way ( :M3 1012· ), on the assumed isotropic
distribution of satellites, on the treatment of sub-halo stripping,
and on the assumed lower limit for the DM mass satellites
( :M10 ;8 for more details on the approach, see Schneider 2015).
Lovell et al. (2016) adopted a similar approach based on
satellite abundances computed through a semi-analytic compu-
tation and found somewhat looser limits, leaving qsin 22 ( )
unconstrained above ~nm 8 keV.

On the other hand, our results are less stringent compared to
the method based on the small-scale structure in the Lyα forest
of high-resolution ( >z 4) quasar spectra with hydrodynamical
N-body simulations(Viel et al. 2013). This method has been
directly applied to warm, thermal DM (yielding a lower limit

.m 3.3 keVX ), and later extended to sterile neutrinos
(Schneider 2016) by considering the values and the slopes of
the suppression of the one-dimensional power spectrum
consistent with the observed Lyα structures. However, such a
method depends on baryonic physics, and in particular on the
thermal history of the intergalactic medium. Indeed, when
assumptions concerning this quantity are relaxed, the Lyα limit
on the thermal relic mass is reduced by about 1 keV(Viel
et al. 2013; Garzilli et al. 2015), and becomes comparable to
the constraint from the high-redshift galaxies(see Menci
et al. 2016a).

4.2. SD Production of Sterile Neutrinos

As discussed in detail in Section 3, in this case the parameter
space is three-dimensional, since it includes the mass of the
scalar mS, the Higgs portal coupling λ and the Yukawa
coupling with the scalar y. The sterile neutrino mass nm is
related to a combination of the three free parameters by
demanding that the model reproduce the observed relic
abundance of dark matter. Before performing a complete
exploration of the parameter space, we first show a comparison
between the model cumulative halo distributions and the
observed number density of galaxies in the illustrative case of a
sterile neutrino with =nm 7.1 keV (the candidate origin of the
potential 3.5 keV line) in the limit of small Higgs portal
coupling l -� 10 6. In such a freeze-in limit (see Section 3),
the scalar mass mS and the Yukawa coupling y will be related
for any given value of nm , thus reducing the parameter space to
be explored. In Figure 3 (left panel) we show the cumulative
halo distributions in such a regime for a scalar mass of

=m 60 GeVS and for different values of the Yukawa coupling
y, and we compare them to the observed number density of
high-redshift HFF galaxies. The strong dependence of the
maximum predicted number density f on y is highlighted in the
right-hand panel of Figure 3, which shows that present data
allow us to set a constraint . ´ -y 9 10 9 at the 2-σ confidence
level.

We then extend our exploration to cover the whole parameter
space of SD production models for sterile neutrinos. With this
aim, we consider a grid of λ and y values for six different values

of the scalar mass =m GeV 60, 65, 100, 170, 500, 1000S .
The latter are chosen to cover the three different regimes where
different production channels are dominant for the production of
scalars from their coupling to the SM particles (see König
et al. 2016, and Section 3): the light scalar case -m m 2S h , the
intermediate case - -m m m2h S h, and the heavy scalar case

.m mS h (in terms of the Higgs mass mh=125 GeV). These
different regimes have a rather strong impact on the distribution
function of the scalar which directly translates into that of the
sterile neutrino and, hence, on the resulting power spectrum.
For each value of mS, we compute the power spectrum

corresponding to each point in the l y– plane as described in
Section 3. Then we represent in Figure 4, left panel, the regions
of the parameter space consistent with the galaxy number
densities measured in the HFF ( .f fobs). These regions
clearly split into a freeze-out (for .l -10 6) and freeze-in (for
l -� 10 6) family. For the freeze-out family, decreasing the
scalar mass mS leads to a tighter bound on y, while yielding an
approximate lower bound of 2l -10 5.2 for the Higgs portal
coupling. For the freeze-in family, decreasing the scalar mass
mS pushes the admitted values of λ to progressively smaller
values, while providing progressively stronger limits on y. Note
that, moving from =m 65 GeVS to =m 60 GeVS , the allowed
freeze-in region shifts to appreciably smaller values of y
(actually out of the plot window). This is because a scalar S
with 60GeV has a mass <m m 2S h . This opens up an entirely
new production channel, namely Higgs decay lh SS, which
actually dominates the production rate. In this case the scalars
(and hence the sterile neutrinos) are produced with a much
larger number density once the Higgs decay sets in. Thus, for
the same combination of l y– , this larger number density
requires a smaller sterile neutrino mass, yielding larger
velocities for the DM particles and suppressing the abundance
of low-mass halos.
Finally, the right panel of Figure 4 displays an explicit

comparison of our high-z HFF bounds for the case
=m 100 GeVS with a version of Lyα bounds derived by

König et al. (2016). The latter authors have introduced an
approximate method of generalizing Lyα bounds to non-
thermal cases, by computing the ratio of power spectra of the
case under consideration to CDM and demanding the “upper”
(i.e., high-power) part of the spectrum to be allowed when
compared to a certain bound. Using the thermal relic mass
bounds of 2.2 and 3.3keV, the blue (consistent with both
bounds), purple (only consistent with the first bound), and red
(inconsistent with both bounds) regions displayed in the right
panel of Figure 4 can be derived. Our HFF-bound, in turn, is
displayed by the green line. As one can clearly see, the
constraints from HFF galaxies basically track the Lyα bounds:
although the latter are slightly stronger, they may possibly
suffer from unknown systematics, given that the distribution of
the intergalactic material is observed and not that of the DM.
However, the fact that both types of bounds are basically
tracking each other adds significant credibility to both
constraints.

4.3. Fuzzy DM

The large observed number density of high-redshift galaxies
turns out to provide particularly strong constraints on fuzzy
DM, i.e., scenarios based on wavelike DM composed by ultra-
light bosons. In this case, we compute the cumulative halo
mass function directly from the formula in Equation (3) derived
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by Schive et al. (2016) from dedicated N-body simulations.
This depends on the single free parameter constituted by the
particle mass mψ, so that the exploration of the parameter space
is straightforward. In the left panel of Figure 5 we show the
cumulative halo mass function for different values of the DM
particle mass (in units of 10−22 eV), where we have
conservatively increased by 10% the model number densities
derived from Equation (3) to account for theoretical uncertain-
ties(see Schive et al. 2016). The strong suppression in the
number of low-mass halos compared to the CDM case yields a
lower limit .y

-m 10 21 eV for the DM particle mass (right
panel of Figure 5) at the 3-σ confidence level. This tightens by
a large factor the previous bounds on mψ derived from the
luminosity function of high-redshift galaxies in the Hubble
Deep Field ( . ´y

-m 1.2 10 22 eV) given bySchive et al.
(2016; see also Corasaniti et al. 2016). This is due to the
increase (by more than one order of magnitude) in the number
density of galaxies achieved by HFF observations of faint
galaxies due to the magnification of the foreground clusters,
which allowed to push the detection limit at z=6 from

= -M 15UV to = -M 12.5UV .
Our results constitute the tightest constraint on fuzzy DM

particles derived so far, and have a strong impact for the whole
class of models based on fuzzy DM. In fact, even allowing for
observational and numerical uncertainties, all results in the
literature indicate that the mass of fuzzy DM particles should
be in the range =y

-m 1 5.6 10 22( – ) · eV to provide solitonic
cores matching the observed density profile of nearby dwarf
galaxies(Lora et al. 2012; Schive et al. 2014; Marsh &
Pop 2015; Calabrese & Spergel 2016; Gonzáles-Morales
et al. 2016). This is inconsistent at more than the 3-σ
confidence level with our lower limits, strongly disfavoring
such a scenario as a viable solution to the cusp–core problem of
dwarf galaxies.

5. Conclusions and Discussion

We have shown that the HFF measurements of the
abundance of ultra-faint lensed galaxies at »z 6 down to faint
magnitudes » -M 12UV have profound implications on the
nature of DM, in particular for DM models based onkeV
sterile neutrinos and on “fuzzy” DM models considered in the
present work.
For the case of resonant production of sterile neutrinos, the

high galaxy number densities ∼1/Mpc3 measured at z=6
by(Livermore et al. 2016) provide stringent limits on the
combination of sterile neutrino mass nm and mixing parameter

qsin 22( ). In particular, our method provides lower limits on the
values of qsin 22( ) for different values of nm which are
complementary to the upper limits derived by the non-
observations of decay lines in the X-ray spectra of dwarf
galaxies(Sekiya et al. 2015; Adhikari et al. 2016; Jeltema &
Profumo 2016; Riemer-Sorensen 2016), thus restricting the
allowed portion of the parameter space of such models to a
narrow region; e.g., the region around the potential 3.5keV
line ( =nm 7.1 keV) is still allowed, but restricted to a narrow
range of values for - -q- -11.4 log sin 2 10.22( ) . The
constraints we obtain on qsin 22( ) for different values of nm
are close to those obtained from the abundance of low-mass
satellites of the Milky Way (Schneider 2016) for a wide range
of values 1nm 10 keV. This supports the reliability of
methods based on structure formation as probes for DM
models with suppressed power spectra, especially considering
that the two methods are applied to galaxies observed at cosmic
times differing by ∼13Gyr. However, the approach in the
present paper is not affected by the uncertainties affecting
methods based on the abundance of Milky Way satellites, like
the assumed mass of galaxy halos and sub-halos, or the
assumed isotropic distribution of satellites. On the other hand,
for large sterile neutrino masses of »nm 10 keV, the
abundance of high-redshift galaxies seems to provide tighter

Figure 3. Left panel: the cumulative mass functions computed at z=6 for SD sterile neutrino models with =m 60 GeVS and =nm 7.1 keV, for different values of
the Yukawa coupling y (shown by the labels on the right) in the freeze-in limit. The shaded areas correspond to the observed number density of galaxies with

- -M 12.5UV within within the 1-σ, 2-σ, and 3-σ confidence levels. Right panel: the maximum value f (including the theoretical uncertainties) of the predicted
number density of DM halos at z=6 for the case with =nm 7.1 keV as a function of the Yukawa coupling y. The upper shaded areas represent the observed number
density of galaxies with - -M 12.5UV within the 1-σ, 2-σ, and 3-σ confidence levels.
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limits on qsin 22( ) compared to the abundance of Milky Way
satellites. This is related to the larger sensitivity of the former
method to the shape of the power spectrum at large
wavenumber k. In turn, this is due to the different dependence
on the variance s M2 ( ) in the mass function in Equation (2)
compared to the mass distribution of satellite sub-halos, and to
the minimal mass assumed for satellite halos in the Milky Way
( . :M M108 ), which excludes tiny halos as hosts of satellite
galaxies, thus reducing the sensitivity of such a method with
respect to very large k-modes. Regarding the limits from Lyα
absorption lines of distant quasar spectra, the present
constraints are less stringent than those obtained by Schneider
(2016). It is however important to notice that our method is
entirely independent of the baryon physics entering the Lyα
method, which could affect the thermal state of the intergalactic
medium(see Viel et al. 2013; Garzilli et al. 2015).

For the case of sterile neutrino production via SD, our
method provides constraints on the combination of scalar mass
mS, Higgs portal coupling λ, and Yukawa coupling y, which are
very close to those derived in König et al. (2016)—as shown in
Figure 4 for the case =m 100 GeVS . In the freeze-in limit (see
Section 3) of small Higgs portal coupling l -� 10 6, where the
Yukawa coupling constitutes the leading quantity in the
determining the model properties, this is due to the strong
dependence of the predicted maximum halo number density f
on y (shown in the right-hand panel of Figure 3 for the case of
sterile neutrino mass =nm 7 keV). When compared to the
observed high-redshift galaxy abundance this allows us to set a
constraint . ´y 9 109 at the 2-σ confidence level.

As for the fuzzy DM, the results from our method have a
relevant impact for the whole class of such models. In fact,
extending the analysis by Schive et al. (2016) to compare with
the recent measurements of galaxy abundance from the HFFs
yields unprecedented limits on the mass of candidate DM
particles of . ´y

-m 1.2 10 21 eV at the 2-σ confidence level
and of . ´y

-m 8 10 22 eV at 3-σ. These values are one order
of magnitude larger than those required to yield core sizes of

dwarf galaxies large enough to match the observations(Marsh
& Pop 2015). Indeed, such limits for the fuzzy DM mass would
correspond to an upper limit 1 :M M3 10J

5· (see Section 3.3)
for the mass scale associated with the de Broglie wavelength of
wavelike DM, pushing the scale where the “fuzzy” nature of
such DM shows up to values much smaller than those involved
in galaxy formation. This result is consistent with the
independent constraints derived from the phase space density
of local galaxies by de Vega & Sanchez (2014).
The bounds presented here are based solely on the statistical

properties of DM halos. Indeed, tighter limits can be obtained
by adopting a physical description of the baryonic processes
involved in galaxy formation, as shown in Menci et al. (2016b).
This is the approach taken, e.g., by Corasaniti et al. (2016) who
compared the observed luminosity function to theoretical
luminosity functions derived from the abundance matching
technique applied to high-resolution N-body simulations. The
uncertainties associated with baryon physics introduced in such
approach can be suppressed by complementing the statistical
analysis with the study of relations among galaxy properties
that are specific to each DM scenario and, as such, carry
additional information on the nature of DM that is potentially
testable with observations.
While our method is robust and independent of the baryon

physics entering galaxy formation, and does not rely on any
estimate for the DM mass of the observed galaxies, the above
results are based on the abundance of z=6 galaxies measured
in the HFF by Livermore et al. (2016). The number density
derived by those authors is based on 167 galaxies at .z 6, and
it is thus robust from the statistical point of view; in any case,
the statistical uncertainties have been considered in computing
the confidence levels of our results. There are however subtle
systematic effects related to the estimation of the survey
volume, i.e., the variance of the lensing magnification maps of
HFF clusters and the physical sizes of faint, high-z galaxies
which are strongly magnified by the cluster potential well.

Figure 4. Left panel: the constraints on the parameter space of SD production model for sterile neutrinos. The colored regions represent the allowed region ( .f fobs)
in the llog – ylog plane for each value of the scalar mass mS (shown by different colors according to the labels on the right). For each scalar mass (and hence for each
color) lighter and darker tonalities represent the 1-σ and 2-σ confidence levels, respectively. Right panel: for the case =m 100 GeVS , we compare our bounds from
HFF galaxies derived in the present work (green thick lines) with a version of Lyα bounds derived by König et al. (2016): the latter are represented as red (forbidden
cases), blue (allowed cases), and purple (constrained cases) segments in the lines of constant nm values in the log λ–log y plane.
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These effects have been critically analyzed by Bouwens
et al. (2016b), who showed that they could result in luminosity
functions flatter than those derived by Livermore et al. (2016)
at . -M 14UV . As discussed in Section 2.1, the different
estimates of the magnification uncertainties obtained by
Bouwens et al. (2016) would yield looser limits on the
parameter space of DM models. For example, an observational
number density f = --log Mpc 0.62obs

3 corresponding to the
luminosity function by Bouwens et al. (at the 2-σ confidence
level, see Section 2.1) would lead to .q -log sin 2 10.22 ( ) for

nm =5 keV, to .q -log sin 2 11.52 ( ) for nm =7 keV, and to
.q -log sin 2 12.22 ( ) for =nm 10 keV in the case of

resonantly produced sterile neutrinos, thus lowering the lower
bounds in Figure 2. For the SD models of sterile neutrinos, the
lower limit on y in Figure 4 would be decreased to
. ´ -y 5 10 8 (for the case nm =7 keV), while for the case

of fuzzy DM, adopting the Bouwens et al. (2016) luminosity
functions would yield . ´y

-m 5 10 22 eV at the 2-σ con-
fidence level.

Thus, on the observational side, the first step to improve the
results presented in this paper consists of a deeper under-
standing of the systematics associated with the lensing
observations of faint, high-redshift galaxies. As for the lensing
magnification, with typical values m > 10 and as large as
~50 100– for the faintest galaxies, the analysis in Livermore
et al. (2016) shows that large differences are found in the
magnification estimates of individual galaxies when different
lensing models are assumed. This is in agreement with the
recent analysis by Meneghetti et al. (2016), who compared the
performances of several lensing models on artificial images
mimicking the depth and resolution of HFF data. They find that
the largest uncertainties in the lens models are found near sub-
structures and around the cluster critical lines, concluding that
uncertainties in the magnification estimate are growing with the
magnification value itself (30% of magnification uncertainties
at .m 10). However, while the magnification of each
individual galaxy could be subject to a large variance, the

aggregated information of the abundance of high-z galaxies is
less subject to such systematics. The analysis in Livermore
et al. (2016) shows that the different lensing models introduce
minimal changes in the best-fit luminosity functions, even at
the faintest absolute magnitudes = -M 12.5UV analyzed at
~z 6, with a systematic uncertainty on the slope α of the

luminosity functions at ~z 6 7– below 2%. Although such an
uncertainty would not change appreciably the results presented
in this work, the proper procedure to be adopted in deriving the
variance in the luminosity function due to the magnification is
still a matter of debate (see Bouwens et al. 2016b).
The other systematic effect affecting the luminosity func-

tions measured by Livermore et al. (2016) is related to the size
distribution of high-z galaxies. In fact, the detection of faint
galaxies is strongly affected by their surface brightness
distributions, with compact galaxies more easily detected
compared to the extended, low surface brightness ones
(Grazian et al. 2011). In the simulations carried out by
Livermore et al. (2016), a normal distribution of half-light radii
rh was assumed with a peak at 500 pc. While similar (or even
higher) number densities are obtained for values 2r 100 pch ,
for smaller values a significant suppression of the faint-end
logarithmic slope α of luminosity function is found (up to 10%
in the case rh=40 pc, Bouwens et al. 2016a). While Bouwens
et al. find that the typical values of rh at z=6 are of the order
of ∼25–80 pc for . -M 15UV , larger values are usually
obtained in the literature: extrapolating the size distribution
obtained by Kawamata et al. (2015) for ~ -M 20UV galaxies
at ~z 6 to fainter magnitudes (assuming a size–luminosity
relation of µr Lh

0.5 Grazian et al. 2012), the typical sizes of
galaxies with = -M 12.5UV range from ∼ 40 pc to ∼100 pc
with a log-normal distribution. Laporte et al. (2016) analyzed
the size distribution of ~z 7 Lyman-break galaxies, finding a
typical value of 250 pc for galaxies with - -- -M19 17UV .
Thus, while the completeness correction adopted by Livermore
et al. (2016) is consistent with most of the extrapolations in the
literature, assessing the actual size distribution of ultra-faint

Figure 5. Left panel: the cumulative mass functions computed at z=6 for fuzzy DM models with different values of the wavelike DM particle mass
= y

-m m 10 eV22
22 . The shaded areas correspond to the observed number density of galaxies with - -M 12.5UV within within the 1-σ, 2-σ, and 3-σ confidence

levels. Right panel: the maximum value f (including the theoretical uncertainties) of the predicted number density of DM halos f at z=6 as a function of m22. The
upper shaded areas represent the observed number density of galaxies with - -M 12.5UV within the 1-σ, 2-σ, and 3-σ confidence levels.
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galaxies at »z 6 would constitute an important improvement
for a precise determination of the number density of such
galaxies, so as to lower this source of systematics below the
present value of »10%. In the future we plan to analyze the
impact of the size–luminosity relation on the HFF luminosity
function based on detailed simulations, using the same
technique adopted in Grazian et al. (2011, 2012) to comply
with the delicate issues (i.e., distortions due to the strong
lensing amplification) involved in the measurement of sizes for
such faint, noisy galaxies.

Thus, although the measurement by Livermore et al. (2016)
constitutes a state-of-the-art achievement, the analysis of the
HFF observations is open to several advancements. This is true
not only for the most magnified objects (as discussed above), but
also for those moderate magnifications ( 1m 10), for which the
largest source of uncertainty is constituted by the accuracy of
photometric redshifts. In this respect, improvements can be
readily obtained through the combination of different procedures
(e.g., Castellano et al. 2016), an approach which is known to
reduce systematic effects of photo-z estimates (Dahlen
et al. 2013). Indeed, deep MUSE observations (Vanzella
et al. 2016) are already able to provide the spectroscopic
redshifts for faint .z 6 galaxies in the HFF pointings,
improving both the lensing magnification maps and the
photometric redshifts. Finally, the analysis in Livermore et al.
(2016) is based at present only on the first two fields of the HFF
survey: the inclusion of the remaining four strong lensing
clusters (Lotz et al. 2016) will reduce both statistical
uncertainties and mitigate possible cosmic variance effects. In
addition, it is not to be disregarded that the six available parallel
HFF pointings at a depth comparable to the HUDF will improve
the determination of the logarithmic faint-end slope of the
luminosity function that can work as a valuable baseline for
interpreting the abundance of fainter lensed sources. In a few
years from now a significant leap will be made possible by the
availability of deep James Webb Space Telescope imaging. In
particular, the capability of reaching 30.5AB (at S/N = 5) in
deep NIRCam fields (e.g., Finkelstein et al. 2015) will improve
by1.5 mag the depth of current HFF imaging, reaching absolute
magnitudes of » -M 11UV , and will yield five-times larger
samples of high-redshift galaxies (Laporte et al. 2015) while
significantly improving photometric selections through the
availability of rest-frame optical photometry of high-z sources.

We thank the referee for constructive comments that helped
to improve the paper.
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