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ABSTRACT

We used Early Release Science (ERS) observations taken with the Wide Field Camera 3 (WFC3) in the GOODS-S field to study
the galaxy stellar mass function (GSMF) at 0.6 ≤ z < 4.5. Deep WFC3 near-IR data (for Y as faint as 27.3, J and H as faint as
27.4 AB mag at 5σ), as well as deep KS (as faint as 25.5 at 5σ) Hawk-I band data, provide an exquisite data set with which determine
in an unprecedented way the low-mass end of the GSMF, allowing an accurate probe of masses as low as M∗ ≃ 7.6 × 109 M⊙ at z ∼ 3.
Although the area used is relatively small (∼33 arcmin2), we found generally good agreement with previous studies on the entire mass
range. Our results show that the slope of the faint-end increases with redshift, from α = −1.44± 0.03 at z ∼ 0.8 to α = −1.86± 0.16 at
z ∼ 3, although indications exist that it does not steepen further between z ∼ 3 and z ∼ 4. This result is insensitive to any uncertainty in
the M∗ parameter. The steepness of the GSMF faint-end solves the well-known disagreement between the stellar mass density (SMD)
and the integrated star-formation history at z > 2. However, we confirm that there appears to be an excess of integrated star formation
with respect to the SMD at z < 2, by a factor of ∼2−3. Our comparison of the observations with theoretical predictions shows that the
models forecast a greater abundance of low mass galaxies, at least up to z ∼ 3, as well as a dearth of massive galaxies at z ∼ 4 with
respect to the data, and that the predicted SMD is generally overestimated at z <∼ 2.

Key words. galaxies: luminosity function, mass function – galaxies: evolution – galaxies: high-redshift –
galaxies: fundamental parameters

1. Introduction

Understanding the assembly of stellar mass in galaxies is a fun-
damental step towards a description of galaxy evolution. Key
tools to study this process through cosmic time are the galaxy
stellar mass function (GSMF) and its integral over masses (the
stellar mass density, SMD hereafter).

Therefore, it is no surprise that most extragalactic surveys in
the past decade have been used to determine the shape and evo-
lution of the GSMF as a function of redshift. The earliest results
based on small field surveys revealed that the SMD decreases
with increasing redshift, as expected in the framework of the
currently accepted cosmological hierarchical scenario, both in
terms of integrated SMD (e.g. Giallongo et al. 1998; Dickinson
et al. 2003; Fontana et al. 2003; Rudnick et al. 2003), as well as
of the detailed GSMF (e.g. Fontana et al. 2004; Drory et al. 2004,
2005). There have since been many indications that the evolution
of the GSMF occurs more rapidly for more massive galaxies than
for low mass ones (e.g. Fontana et al. 2006; Pozzetti et al. 2007;
Pérez-González et al. 2008; Kajisawa et al. 2009; Marchesini
et al. 2009), a behaviour known as downsizing in stellar mass
(see Fontanot et al. 2009, and references therein). The advent
of near- and mid-infrared facilities, above all the Spitzer tele-
scope, has allowed the uncertainties in stellar mass estimates
to be reduced and the extension of their analysis to z >∼ 3

(e.g. Fontana et al. 2006; Kajisawa et al. 2009; Caputi et al.
2011). In parallel, wide-field surveys have provided large sam-
ples with more accurate statistics (Drory et al. 2009; Pozzetti
et al. 2010; Bolzonella et al. 2010; Marchesini et al. 2010; Ilbert
et al. 2010). One of the key results of these surveys has been
the demonstration that the shape of the GSMF cannot be de-
scribed by a (widely adopted) single Schechter function at least
up to z ≃ 1.5, but that it departs from this parametric form be-
cause of the superposition of individual distributions for the red
and blue galaxy populations (Ilbert et al. 2010; Pozzetti et al.
2010; Bolzonella et al. 2010; Mortlock et al. 2011) or/and be-
cause of a change with stellar mass either in star formation effi-
ciency or galaxy assembly rate (Drory et al. 2009).

An accurate knowledge of the GSMF is also a sensitive test
of modern galaxy evolutionary models. From its initial studies,
much interest in the GSMF has been triggered by the possibil-
ity of constraining the physics of the evolution of more massive
galaxies, which, according to the hierarchical structure forma-
tion scenario, are the results of the merging of lower mass ob-
jects at earlier times (Cole et al. 1994). In addition, to achieve
a complete view of the galaxy formation picture, an important
goal is a robust knowledge of the properties of low mass galax-
ies at high redshift. The slope of the GSMF at low masses may
also represent a critical benchmark for current galaxy formation
models. There is growing evidence that the number of low mass
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galaxies in the Universe is systematically overpredicted by most
or all theoretical models (Fontana et al. 2006; Fontanot et al.
2009; Marchesini et al. 2009). Very similar evidence also ap-
pears in the analysis of the luminosity functions (Poli et al. 2001;
Marchesini & van Dokkum 2007; Lo Faro et al. 2009; Henriques
et al. 2011). A particularly striking aspect of the mismatch is
that it appears in different renditions of theoretical models, sug-
gesting that it marks some fundamental incompleteness in our
theoretical understanding of galaxy formation and growth.

While a global picture is emerging from these investigations,
many outstanding questions are still to be addressed. In gen-
eral, the various GSMFs presented in the literature agree rea-
sonably well at z = 0−5, although disagreements exist, some-
what increasing at high redshift (Caputi et al. 2011; González
et al. 2011; Marchesini et al. 2010; Mortlock et al. 2011), that
cannot be explained by merely field-to-field variance. At even
higher redshift, the available estimates of the SMD are based on
UV-selected samples, hence are potentially incomplete in mass,
and/or are often derived by adopting average mass-to-light ratios
for the whole population rather than detailed object-by-object
estimates (González et al. 2011). Finally, and particularly rele-
vant for the main topic of this paper, the GSMF at low masses is
highly uncertain at intermediate and high redshifts, since current
samples do not extend to the depths required to establish its slope
with good accuracy. These uncertainties are due to a number of
observational limitations.

In addition to the uncertainties related to the GSMF compu-
tation, it must not be forgotten that the actual estimates of stellar
masses from broad band photometry are potentially affected by
many systematic uncertainties, even when accurate redshifts are
available. Part of this uncertainty is due to the lack of knowl-
edge of important parameters of the stellar population, such as
metallicity or extinction curve. The modelling of highly uncer-
tain phases of stellar evolution is another source of uncertainty:
in particular the different treatments of the thermally pulsating
asymptotic giant branch (TP-AGB) phase is the source of the
highest discrepancies in simple stellar population models (see
e.g. Maraston 2005; Marigo et al. 2008), and has relevant impli-
cations for the estimate of near-infrared luminosities and stellar
masses for galaxies dominated by intermediate-age stellar pop-
ulations (∼1 Gyr). The largest bias is due to the difficulties in
reconstructing the star formation history of each galaxy, which
is necessary to estimate the appropriate M∗/L ratio, and that may
be poorly described by simplistic models such as those adopted
in stellar population synthesis codes (Maraston et al. 2010; Lee
et al. 2010).

All these uncertainties contribute to one of the main puzzles
that appear in present-day observational cosmology: the mis-
match between the observed SMD and the integrated star forma-
tion rate density (SFRD) (e.g. Hopkins & Beacom 2006; Fardal
et al. 2007; Wilkins et al. 2008). In principle, these two observ-
ables represent independent approaches to studying the mass as-
sembly history from different points of view. However, the inte-
grated star formation, after considering the gas recycle fraction
into the interstellar medium, appears to be higher than the ob-
served SMD at all redshifts. Several authors have highlighted
this severe discrepancy (of up to a factor of ∼4 at z ∼ 3, Wilkins
et al. 2008). Moreover, if the merging contribution to the stel-
lar mass build-up is accounted for (Drory & Alvarez 2008), the
agreement gets even worse. Intriguingly, the integrated SFRD
exceeds the observed SMD, implying that we either overestimate
the SFRD, or miss a substantial fraction of massive galaxies, or
underestimate their masses, or finally fail in reconstructing the
low-mass tail of the GSMF. An initial mass function (IMF) that

varies over cosmic time was invoked to reconcile the two observ-
ables (Fardal et al. 2007; Wilkins et al. 2008). However, before
invoking the non-universality of the IMF, it must be noted that
both the SFRD and the SMD are affected by large uncertain-
ties. The measure of the star formation rate is itself particularly
difficult, being either highly dependent on uncertain dust correc-
tions (e.g. Santini et al. 2009; Nordon et al. 2010) or limited to
the brightest far-infrared galaxies at z < 2−3 (Rodighiero et al.
2010). On the SMD side, in addition to the uncertainties related
to the stellar mass estimate itself, a major role is played by the
poor knowledge of the low-mass tail of the GSMF. Owing to the
limited depths of current IR surveys, the estimate of the faint-
end slope basically relies on large extrapolations. An incorrect
estimate, given the large number density of low mass objects,
could translate into non-negligible errors in the SMD.

A robust estimate of the slope of the GSMF is necessary to
provide tighter constraints on all these unknowns. In this study
we take advantage of the recent deep near-IR observations car-
ried out by Wide Field Camera 3 (WFC3) installed on the HST in
the upper part of the GOODS-S field in the Y, J and H bands and
by Hawk-I mounted at VLT in the KS band. These data allow ac-
curate measurements of the stellar mass to very low limits. In this
respect, we extend to higher redshifts and lower masses the deep
analysis carried out by Kajisawa et al. (2009). The only study
of comparable depth is Mortlock et al. (2011), which was also
based on WFC3 data. However, the greater depth of the Early
Release Science (ERS) images used in this work and the conser-
vative cuts that we apply to the sample ensure an excellent over-
all photometric quality, as we discuss in Sect. 3.3. Unfortunately,
the area covered by ERS observations is small compared to re-
cent surveys, and is slightly overdense. This feature somewhat
limits the universal validity of our results regarding the SMD,
especially in the intermediate redshift bins, although we chose
our redshift intervals in order to ensure that the known clus-
ters and groups (discussed in Sect. 2) were mostly confined to
two of them. However, we show that the study of the faint-end
slope, which is the main aim of the present analysis, is insignif-
icantly affected by these cosmic variance effects. In addition,
this work represents an exercise to explore the potential of fu-
ture deep WFC3 observations, such as those of the CANDELS
survey (Grogin et al. 2011; Koekemoer et al. 2011), which will
cover a much more extended area over various fields with depths
comparable to the ERS observations.

The paper is organized as follows: after introducing the data
in Sect. 2, we present the stellar mass estimate and the GSMF in
Sect. 3, the analysis of the faint-end slope in Sect. 4, the SMD
and its comparison with the integrated SFRD in Sect. 5, and
the comparison with theoretical predictions in Sect. 6. Section 7
summarizes our results. In the following, we adopt the Λ-CDM
concordance cosmological model (H0 = 70 km/s/Mpc, ΩM =
0.3 and ΩΛ = 0.7). All magnitudes are in the AB system.

2. The data sample

This work exploits a new set of near-IR images that represent a
significant improvement in photometric quality and depth over
existing surveys. The first component is the public release of the
ERS observations taken with WFC3, the new near-IR camera on
board HST. The ERS observations cover an area of ∼50 arcmin2,
located in the northern ∼30% of the GOODS-South field. They
were taken in three filters, Y098, J125, and H160, which reach 27.3
(Y) and 27.4 (J, H) magnitudes at 5σ in an area of∼0.11 arcsec2.
We used the ERS mosaics produced as described in Koekemoer
et al. (2011); we also refer to Grazian et al. (2011) for details of
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the catalogues, and Windhorst et al. (2011) for a full description
of the ERS observational program.

We complemented these images with new deep KS band im-
ages taken over the GOODS-S field with the near-IR VLT imager
Hawk-I. The latter were taken in the framework of a program de-
signed to search for z ∼ 7 galaxies (Castellano et al. 2010a,b).
In the KS band, the surveyed area covers 80% of the WFC3 ERS
area. Owing to this and after excluding image edges of dubious
quality, the available area reduces to ∼33 arcmin2. The data re-
duction of the KS images is analogous to the procedure used for
other Hawk-I data (Castellano et al. 2010a). The net exposure
time is 25 200 s, with a 1σ rms of 1.26 counts per second in a
1′′ aperture. The magnitude limit at 5σ is ∼25.5, one magnitude
deeper than the previous ISAAC KS band.

We finally built a multiwavelength GOODS-ERS catalogue
adding the other public images available in the GOODS-S field.
They include the ACS images in the BVIz bands (Giavalisco
et al. 2004), the deep UR images from VIMOS (Nonino et al.
2009) and the four IRAC bands at 3.6, 4.5, 5.8, and 8.0 µm.
With respect to the data set used to assemble our previous
GOODS-MUSIC sample (Grazian et al. 2006; Santini et al.
2009), the present GOODS-ERS data set benefits not only from
the much deeper IR coverage provided by the new WFC3 and
KS band data, but also from a deeper version of the z band
image, which nearly doubles the exposure time of the previ-
ous image, a deeper U band image, and a brand new R image.
In this data set, we extracted a 14 band multiwavelength cat-
alogue using the H band as a detection image. Colours were
carefully obtained with the same technique used in the GOODS-
MUSIC catalogue, where we adopted the PSF-matching code
CONVPHOT (De Santis et al. 2007) to accurately deblend ob-
jects in the ground-based and Spitzer images. We note that the
depth of the H band even exceeds the depth of the bluest bands,
resulting in very poor quality photometric information about the
faintest H-selected objects.

The catalogue was cross-correlated with existing spectro-
scopic samples. For sources lacking spectroscopic information,
photometric redshifts were computed by fitting the 14 band mul-
tiwavelength photometry to the PEGASE 2.0 templates (Fioc &
Rocca-Volmerange 1997, see details in Grazian et al. 2006). The
accuracy reached by the photometric redshifts is very high, the
absolute scatter |∆z|/(1+ zspec) being equal to 0.03, with only 3%
of severe outliers (|∆z|/(1+ zspec) > 0.5). The statistical error as-
sociated with each photometric redshift was used to evaluate the
limiting magnitude at which a reliable GSMF can be computed.
We found that a limit H ≃ 26 (or, equivalently, KS ≃ 25.5) is
appropriate to maintain the error in the mass estimate (see next
section) to within 0.3 dex and the relative scatter in the photo-
metric redshifts |∆z|/(1 + z) < 0.1 for 85% of objects, and we
adopt this in the following. From the analysis of the individual
photometric-redshift probability distributions, we can compute
the fraction of “reliable” candidates. We considered a candidate
to safely lie within a given redshift interval when the integral
of its probability distribution curve, normalized to unity, over
that interval is larger than 90%. Moreover, we accepted a certain
level of tolerance in the definition of the redshift range to al-
low for the uncertainty in photometric redshifts. Following this
method, for all KS < 25.5 sources with zphot > 2, we can ex-
clude a secondary redshift solution at zphot < 1.5 in 97.2% of
the sources. This fraction increases to 99.6% when only bright
sources (Ks < 24) are considered. We also extracted a KS band
detection catalogue, and verified that all the objects detected in
the KS band are also detected in the H one, which is unsurprising
given the extraordinary quality of the WFC3 data.

Fig. 1. Redshift distribution of the KS ≤ 25.5 GOODS-ERS sam-
ple (black solid histogram) compared to the KS ≤ 23.5 GOODS-
MUSIC one adopted by Fontana et al. (2006) (red dotted histogram).
Overdensities at z ≃ 0.7, z ≃ 1, z ≃ 1.6, and z ≃ 2.2−2.3 can be recog-
nized in the distribution (see text for references).

On the basis of these results, we decided to restrict our analy-
sis to the KS ≤ 25.5 sample, albeit obtained from the H-selected
one, for two reasons: firstly, this selection allows a more robust
comparison with previous K-selected surveys; and secondly, a
KS = 25.5 threshold is more efficient in detecting low mass
objects than a H = 26 one. Adopting this cut, we extend by
two magnitudes the previous work of Fontana et al. (2006), who
studied the GSMF of the KS < 23.5 GOODS-MUSIC sample.
Our KS ≤ 25.5 sample here includes 3210 objects, 421 of which
have spectroscopic redshifts.

We plot in Fig. 1 the redshift distribution of the
GOODS-ERS sample used in this work (black solid histogram)
compared to that of the GOODS-MUSIC sample adopted by
Fontana et al. (2006) (red dotted histogram). Since the area cov-
ered by the ERS survey is relatively small, the sample is more
sensitive to overdensities. The extended overdensities at z ≃ 0.7
and z ≃ 1, which cover the entire GOODS-S field (Vanzella et al.
2005; Salimbeni et al. 2009a and references therein), are clearly
recognizable. Unfortunately, the northern part of GOODS-S also
includes a cluster at z ≃ 1.6 (Castellano et al. 2007) and various
groups at z ≃ 2.2−2.3 (Salimbeni et al. 2009a; Yang et al. 2010;
Magliocchetti et al. 2011), which both affect the overall redshift
distribution.

Another difference from the Fontana et al. (2006) analysis is
that the final sample used in this work includes Type 2 AGNs,
since we show in Santini et al. (2012) that their stellar mass es-
timate is insignificantly affected by the nuclear emission. The
same is untrue for Type 1 AGNs (Santini et al. 2012), so we re-
moved spectroscopically identified Type 1 AGNs from the sam-
ple. Since their number is very small (only four sources iden-
tified in the entire sample), their removal does not affect the
GSMF estimate. We also removed all identified Galactic stars.
Finally, we applied a redshift selection to the range 0.6–4.5 and
we ended up with a sample of 2709 objects (of which 354 have
spectroscopic redshifts).

3. The galaxy stellar mass function (GSMF)

3.1. Stellar masses

Stellar masses were estimated by fitting the 14 band photom-
etry (up to the 5.5 µm rest-frame) to the Bruzual & Charlot
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synthetic models, in both their 2003 (BC03 hereafter) and 2007
version (Bruzual 2007, CB07), through a χ2 minimization. For
consistency with our previous works and most of the studies
in the literature, we adopted the estimates derived with BC03
templates as the reference ones. In the fitting procedure, red-
shifts were fixed to the spectroscopic or photometric ones. Our
1σ errors, caused by both the photometric uncertainties and the
photometric-redshift scatter, were computed by considering all
the solutions within χ2

min+1. During the error computation, spec-
troscopic redshifts were fixed to their value, while photometric
ones were allowed to vary around their best-fit solution in order
to account for their degeneracy.

We parametrized the star formation histories as exponen-
tially declining laws with a timescale τ. We analysed a wide pa-
rameter space for metallicities, ages, extinctions, and τ, whose
details can be found in Fontana et al. (2004), as updated in
Santini et al. (2009). With respect to our previous works, we
also excluded templates with super-solar metallicity at z ≥ 1.
Studies of the mass-metallicity relation (Maiolino et al. 2008)
indeed demonstrated that galaxies at high redshift are typically
characterized by sub-solar metallicities. We decided to adopt ex-
ponentially declining τ models despite it being likely that they
are a poor and oversimplified description for the star formation
history (e.g., Maraston et al. 2010). However, Lee et al. (2010)
showed that the resulting stellar masses can still be considered
robust because of a combination of effects in the estimate of the
galaxy star formation rates and ages. Moreover, τ-models are
widely used even in the most recent literature and allow a direct
comparison with previous works.

We adopted a Salpeter IMF. We also computed the stellar
masses by assuming a Chabrier IMF, and checked that these
are simply shifted by a factor −0.24 dex, which is constant to
within 3% at the different redshifts. Moreover, we tested that the
GSMFs obtained by adopting the two IMFs are consistent after
applying the same shift, in agreement with what was found by
Salimbeni et al. (2009b).

The comparison with our previous GOODS-MUSIC sam-
ple allows us to test the effect of a deeper photometry data set
on the accuracy of photometric redshifts and stellar masses.
For this reason, we compared photometric redshifts and stel-
lar masses for identical objects. The photometric redshifts of
the present GOODS-ERS data are in very good agreement with
the GOODS-MUSIC ones. Considering all objects in common
between the two catalogues, the average scatter is ⟨|zERS −
zGOODS−MUSIC|/(1 + zERS)⟩ = 0.07, with only 0.06% of severe
(scatter >0.5) outliers. The stellar masses are also consistent
with those derived from the GOODS-MUSIC catalogue. When
selecting galaxies for which the redshift estimate differs by 0.1
at most, the scatter (MERS − MGOODS−MUSIC)/MERS is on aver-
age equal to −0.03 ± 0.40. The major improvement provided by
the higher quality photometry of WFC3 observations leads to
a reduction in the uncertainties in the stellar masses. In Fig. 2,
we compare the relative error in the stellar mass estimated us-
ing the GOODS-ERS data set (black solid circles/solid lines)
with that obtained from GOODS-MUSIC catalogue (red open
boxes/dotted lines). We again selected only galaxies common to
both catalogues with consistent redshifts. In the upper panels, we
show the distribution of the ∆M/M ratio, where ∆M is the aver-
age 1σ error bar for each object (∆M = (M∗ max −M∗ min)/2), in
two redshift intervals centred at z = 2 and z = 3; in the lower
panel, we have plotted, as a function of redshift, the median
∆M/M in each of the redshift bins used in this work. The rela-
tive errors in the stellar mass for the GOODS-ERS sample are on
average ∼30% smaller than those computed for the same objects

Fig. 2. Upper: distribution of the ∆M/M ratio, where ∆M is the average
1σ error bar for each object, at z ∼ 2 (left) and z ∼ 3 (right). Black solid
histograms refer to the GOODS-ERS sample, whereas red dotted ones
represent the GOODS-MUSIC data set. Lower: median ∆M/M in each
of the redshift bins used in this work as a function of the central redshift
for GOODS-ERS (black solid circles/solid lines) and GOODS-MUSIC
(red open boxes/dotted lines).

using the GOODS-MUSIC photometry, the difference increas-
ing with redshift. It is clear that deep photometry in the near-IR
regime is crucial to help improve our stellar mass estimates.

3.2. The GSMF estimate

We estimated the GSMF by adopting both the non-parametric
1/Vmax method (Schmidt 1968) and the STY (Sandage et al.
1979) maximum-likelihood analysis assuming a Schechter para-
metric form. As for any other magnitude-limited sample, our
sample does not have a defined limit in stellar mass. For this
reason, at each stellar mass and each redshift, we computed
the fraction of objects lost because of the limited width of
the M∗/L distribution by adopting the technique described in
Fontana et al. (2004), after verifying that the simple parametriza-
tion used to describe the observed M∗/L distribution still holds
for our sample.

We show the results of our analysis as black solid circles
(1/Vmax method) and black solid lines (STY approach) in Fig. 3
(where the reference BC03 templates were used). The best-fit
Schechter parameters are reported in Table 1. The error bars
in the 1/Vmax points include Poissonian uncertainties, as well
as uncertainties in the stellar masses. The latter were estimated
by means of a Monte Carlo simulation, where we randomly ex-
tracted the stellar masses according to their 1σ uncertainties and
re-computed the GSMF of 10 000 mock catalogues using the
same procedure described above.

Given the degeneracy between the faint-end slope α and the
characteristic mass M∗ of the Schechter function, the STY ap-
proach suffers from the incomplete sampling of the high mass
regime owing to our small area, especially at high redshift. For
this reason, the highest mass 1/Vmax points are often poorly de-
termined, because of the large statistical error. In the highest
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Fig. 3. GSMFs obtained with BC03 stellar templates in different redshift ranges compared with previous works. Black solid circles represent our
analysis with the 1/Vmax method, black solid lines show the best-fit to a Schechter function according to the STY approach. The grey dotted
line replicates the best-fit Schechter function at z ∼ 0.8 in the higher redshift panels. Error bars include the uncertainties in the stellar masses
as well as Poissonian errors. The highest mass points are often poorly determined, because of the large statistical error, resulting from our poor
sampling of the massive side. Other symbols represent the 1/Vmax results of previous works, scaled to the same cosmology and converted to the
same IMF: Fontana et al. (2006): open blue circles (F06); Bolzonella et al. (2010): solid green triangles (B10); Pozzetti et al. (2010): open purple
triangles (P10); Ilbert et al. (2010): grey stars (I10); Kajisawa et al. (2009): orange crosses (K09); Marchesini et al. (2009): solid red boxes (M09);
Marchesini et al. (2010): open pink boxes (M10); Mortlock et al. (2011): solid dark green pentagons (Mo11); González et al. (2011): open violet
pentagons (G11). All the literature works considered for the comparison adopted the same stellar templates as this study. The legend shows the
redshift intervals in which each set of points was computed.

redshift bin, to constrain the fit, we fixed1 M∗ to the value ob-
tained at z ∼ 3. The fits found in this case are shown in Fig. 3 and
the relevant Schechter parameters are given in Table 1. In this ta-
ble, we also provide (third column) the fraction of objects where
a secondary photometric-redshift solution falls outside each red-
shift interval. This fraction was defined following the criterion
discussed above and allowing a tolerance in photometric red-
shift of 0.2. We found that the number density, given by the nor-
malization parameter φ∗, decreases with increasing redshift from
10−3.70+0.06

−0.07 at z ∼ 0.8 to 10−4.12+0.08
−0.10 at z ∼ 4. We recall that cosmic

variance effects could cause oscillations in the normalization pa-
rameter, especially in the two bins that are most affected by the
presence of overdensities, namely the 1.4−1.8 and 1.8−2.5 red-
shift intervals. However, a similarly decreasing trend for the nor-
malization was also observed by previous works (e.g. Fontana
et al. 2006; Pérez-González et al. 2008; Kajisawa et al. 2009;
Marchesini et al. 2009; Mortlock et al. 2011). Most interestingly,

1 In Sect. 4, we study how the best-fit parameter α varies when choos-
ing a different value of M∗.

the low-mass slope steepens significantly from z ∼ 0.8 to z ∼ 3,
where the Schechter parameter α decreases from −1.44±0.03 to
−1.86 ± 0.16, and then flattens from z ∼ 3 to z ∼ 4. As demon-
strated in Sect. 4, this result remains valid here despite the un-
certainties derived for the small area covered by our survey and
the presence of known overdensities. Indeed, even the redshift
ranges that are the most contaminated show faint-end slopes in
line with the results in the other redshift bins.

Up to z ∼ 2.5, the GSMF shows a dip at M⋆ ≃ 1010 M⊙,
which seems to shift to higher stellar masses as redshift in-
creases, implying that a single Schechter is a poor parametriza-
tion. This dip has been identified in previous wide-field sur-
veys and interpreted as the differential evolution of the red and
the blue populations (Ilbert et al. 2010; Pozzetti et al. 2010;
Bolzonella et al. 2010; Mortlock et al. 2011). The effect is larger
in the redshift intervals 1.4 < z < 1.8 and 1.8 < z < 2.5,
which are highly affected by the presence of a well-known clus-
ter at z ∼ 1.6 (e.g. Castellano et al. 2007) and of several of lo-
calized overdensities at z ≃ 2.2−2.3 (Salimbeni et al. 2009a;
Yang et al. 2010), respectively: they are indeed populated by a
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Table 1. Best-fit Schechter parameters in the different redshift intervals as a result of the STY approach using Bruzual & Charlot (2003) templates.

Schechter parameters (STY method) – BC03 templates

Redshift bin N %not secure α log10 M∗(M⊙) log10φ∗(Mpc−3) log ρ(M⊙ Mpc−3)

0.6–1.0 584 8.5% –1.44 ± 0.03 11.67 ± 0.17 –3.70 +0.06
−0.07 8.51

1.0–1.4 375 6.2% –1.47 ± 0.05 11.61 ± 0.18 –3.47 +0.07
−0.08 8.35

1.4–1.8 259 9.7% –1.60 ± 0.07 11.75 ± 0.26 –3.85 +0.11
−0.14 8.23

1.8–2.5 425 7.4% –1.84 ± 0.06 11.82 ± 0.28 –4.17 +0.14
−0.20 8.29

2.5–3.5 182 11.8% –1.86 ± 0.16 11.30 ± 0.27 –3.94 +0.16
−0.26 7.97

3.5–4.5 51 8.4% –1.80 ± 0.20 11.30 (fixed) –4.12 +0.08
−0.10 7.72

Notes. Parameters with no error bars have been fixed to the value in the lower redshift bin. The second column indicates the numbers of galaxies
in each redshift bin based on which the GSMF is actually computed. The third column shows the fraction of galaxies where a secondary redshift
solution outside the redshift bin cannot be discarded with a 90% probability (see Sect. 3.2 for details). The last column reports the corresponding
mass density ρ obtained by integrating the GSMF between 108 and 1013 M⊙.

higher fraction of old red galaxies, which enhances this dip. A
different explanation of the dip around ∼1010 M⊙ was suggested
by Drory et al. (2009), who also measured a bimodal shape in
the GSMF of the blue and red populations separately. This di-
chotomy in galaxy formation, which pre-dates the red sequence
appearance, was ascribed to a change with stellar mass in either
star formation efficiency or galaxy assembly rate. The studies
cited above show that a double Schechter is a more accurate de-
scription of the shape of the total GSMF. However, given the
small size of our sample, the inclusion of two more free param-
eters (Bolzonella et al. 2010) makes the fit degenerate and was
not an approach that we adopted here.

3.3. Comparison with previous results

We show in Fig. 3 a compilation of 1/Vmax points collected from
the literature, as listed in the legend, scaled to the same cosmol-
ogy and IMF. Unfortunately, it is impossible to correct for the
effects of different stellar libraries, because, as we show in the
next section, we are unable to determine a systematic shift that
they could cause in the GSMF. Therefore, we decided to show
only those studies that adopt the same stellar library as this work.
Overall, our results are in good agreement with most of the other
surveys, especially up to z ∼ 3. In the two redshift intervals af-
fected by the overdensities (z ∼ 1.6 and z ∼ 2.2), our GSMFs
are on average higher than the other surveys, but still consis-
tent with most of them within the errors. In general, we report
a larger number of galaxies at the bright tail than Fontana et al.
(2006), because the present study includes AGNs (except the few
identified Type 1), which preferentially live in high mass galax-
ies (Bundy et al. 2008; Alonso-Herrero et al. 2008; Brusa et al.
2009; Silverman et al. 2009; Xue et al. 2010; Santini et al. 2012).
Given the very deep near-IR observations used in this work, the
sampling of the low-mass end of the GSMF is considerably finer
than most previous surveys, on average by 0.5 dex up to z ∼ 1.8
and by 0.1 dex at z ∼ 4, and at the same time the conservative
photometric cut (KS < 25.5) ensures reliable results even at the
lowest masses.

The only comparable study sampling similar or slightly
lower stellar masses is the one of Mortlock et al. (2011). This
work is somewhat peculiar, being obtained from a set of bi-
ased pointings specifically designed to contain as many mas-
sive galaxies as possible, and a posteriori corrected to account
for this bias. They pushed their detection to H = 26.8 at a 5σ
level, while our sample, although extracted from images of sim-
ilar depth, was cut at a brighter limit to ensure good photometric

quality. They also did not include any K band data, which is
important to estimate reliable stellar masses. Finally, since our
study is based on 14 bands of photometry (instead of 6 bands
as Mortlock et al. 2011), our work also relies on good quality
photometric redshifts.

Despite the limited sky area, the bright-end tail is compara-
ble overall within the uncertainties with that inferred by large
surveys over the whole redshift range (with the exception of the
1.4−2.5 redshift interval, which, as discussed above, is affected
by the presence of overdensities). The only severe disagreement
is found when comparing our results in the highest redshift inter-
val to González et al. (2011), who, as already pointed out in the
introduction, derived the GSMF by using a different procedure,
i.e. by combining the UV luminosity function with an average
M∗/L ratio.

3.4. The effect of different stellar templates

The systematic uncertainties caused by the various assumptions
involved in spectral energy distribution modelling were shown
to dominate the overall error budget affecting the GSMF (see
Marchesini et al. 2009, for a detailed analysis). In this regard, a
significant role is played by the choice of the stellar templates
used to estimate the stellar mass.

Stellar masses obtained using the CB07 stellar library, which
includes an improved TP-AGB stars treatment, are on average
0.12 dex lower than those inferred using the BC03 templates,
with a scatter as large as 0.17 dex. We plot in Fig. 4 their ratio
as a function of the stellar mass adopted as a reference in this
work (MBC03) in different redshift bins. The lack of a clear trend
of MBC03/MCB07 with stellar mass or redshift translates into a
lack of a rigid offset between the GSMFs computed with the
two libraries, although the CB07 points are on average at lower
stellar masses than BC03.

We compare in Fig. 5 the GSMFs obtained with the BC03
templates (black solid curves/solid circles) and the CB07 ones
(red dotted curves/open boxes). For the sake of simplicity, we
decided to report the four most representative bins. The results
for the 1.0−1.4 and 1.4−1.8 redshift bins are very similar to
the 0.6−1.0 and 1.8−2.5 ones, respectively. We also show the
1/Vmax points of Marchesini et al. (2009) (their set 8) and Caputi
et al. (2011), both obtained by adopting the CB07 templates.
The results of Marchesini et al. (2009) agree with our CB07-
based GSMF in all except the 1.8−2.5 redshift interval, likely
because of imperfect redshift overlap between the two analysis.
The points from Caputi et al. (2011) are in broad agreement with
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Table 2. Same as Table 1 using Bruzual (2007) templates.

Schechter parameters (STY method) – CB07 templates

Redshift bin N %not secure α log10 M∗(M⊙) log10φ∗(Mpc−3) log ρ(M⊙ Mpc−3)

0.6–1.0 509 8.5% –1.50 ± 0.03 11.85 ± 0.24 –3.70 +0.10
−0.13 8.39

1.0–1.4 372 6.2% –1.46 ± 0.05 11.50 ± 0.18 –3.49 +0.08
−0.09 8.22

1.4–1.8 264 9.7% –1.42 ± 0.07 11.32 ± 0.17 –3.41 +0.09
−0.12 8.09

1.8–2.5 437 7.4% –1.58 ± 0.06 11.29 ± 0.15 –3.52 +0.10
−0.12 8.07

2.5–3.5 153 11.8% –2.16 ± 0.11 11.29 (fixed) –4.39 +0.28
−1.14 8.05

3.5–4.5 45 8.4% –1.88 ± 0.21 11.29 (fixed) –4.28 +0.11
−0.15 7.67

Fig. 4. Ratio of stellar masses computed with BC03 (MBC03) and CB07
(MCB07) templates versus MBC03 in different redshift bins.

ours at the bright end, while the incompleteness that the authors
claim to be affected by below M∗ ∼ 1011 M⊙ is likely responsible
for the disagreement at low stellar masses.

The best-fit Schechter parameters of the CB07-based GSMF
are reported in Table 2. At z > 2.5, we were forced to fix2 the M∗

parameter to its best-fit value at z ∼ 2.15. If it is instead allowed
to vary, the fit is unconstrained or the maximum-likelihood anal-
ysis does not converge. The CB07- and BC03-based GSMFs dif-
fer from each other. However, we do not find any similar sys-
tematic behaviour at all redshifts. That the high-mass end of the
CB07-based GSMF is unconstrained at z > 2.5, while the BC03-
based one suffers from poor statistical sampling only in the high-
est redshift bin (z > 3.5), is a further confirmation that the two
GSMFs are not affected by a systematic shift in stellar mass.

2 See Sect. 4 for an analysis of how the best-fit parameter α varies
when choosing a different value for M∗.

Fig. 5. Comparison between the GSMFs obtained with the Bruzual &
Charlot (2003) template library (black solid circles and solid curves)
and the Bruzual (2007) one (red open boxes and dashed curves).
Symbols are the results of the 1/Vmax analysis and curves represent the
STY Schechter fits. Error bars include the uncertainties in the stellar
masses as well as Poissonian errors. Other symbols present 1/Vmax re-
sults of previous works based on CB07 templates, scaled to the same
cosmology and converted to the same IMF: Marchesini et al. (2009):
solid purple triangles (M09); Caputi et al. (2011): cyan stars.

At the lowest and the highest redshifts, we find the closer
agreement, the normalization of the best-fit Schechter function
being only slightly lower when CB07 templates are used. At in-
termediate redshifts, we observe a more serious disagreement,
resulting in different faint-end slopes and characteristic masses.
This is unsurprising, because the effect of including of the TP-
AGB phase is expected to be important at intermediate ages
(0.2–2 Gyr), which predominate the 2 <∼ z <∼ 3 redshift range
(Maraston 2005; Henriques et al. 2011). Although the difference
between the CB07- and the BC03-based GSMFs do not show a
systematic trend at all redshifts, the characteristic masses seem
to be on average lower when CB07 templates are used (see Fig. 6
discussed in the next section), as expected, despite the large un-
certainties, in agreement with the results of Marchesini et al.
(2009). This trend is clear at 1.4 < z < 2.5, where our red-
shift bins overlap with those of Marchesini et al. (2009), while
the lack of high quality statistics at higher redshifts prevents us
from drawing any firm conclusions about the effect of chang-
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Fig. 6. The α and M∗ space (1σ and 2σ contours) resulting from the
maximum-likelihood analysis. Black solid curves refer to BC03-based
GSMFs, red dotted curves refer to CB07-based ones.

ing the stellar templates. For what concerns the variation in α
when changing the template library, we find similar slopes from
z ∼ 0.8 to z ∼ 1.2, while in the redshift interval 1.4–2.5 the
BC03-based GSMFs are steeper than the CB07-based ones by
0.2–0.3. Marchesini et al. (2009) reports similar slopes when us-
ing BC03 and CB07 stellar templates in the redshift interval 1.3–
3.0, while their BC03-based GSMF is steeper than the CB07-
based one at 3.0 < z < 4.0. The intrinsic difference between the
two surveys does not allow us to investigate the origin of this
mismatch.

4. The faint-end slope

The main goal of this study has been to investigate the faint-end
slope of the GSMF, especially at the highest redshifts (z > 2).
From both Fig. 3 and Tables 1 and 2, it is evident that the low-
mass tail steepens with redshift. The results from applying the
STY approach to our BC03-based data indicate that the faint-end
slope steepens significantly between z ∼ 0.8, where we fitted
α = −1.44 ± 0.03, and z ∼ 3, where the best-fit α is equal to
−1.86 ± 0.16, before flattening up to z ∼ 4.

First of all, we performed a simple sanity check to verify that
the abundance of low mass objects at z > 1.8 is reliable by plot-
ting all objects with M∗ < 1010 M⊙ and 1.8 < z < 2.5 on a BzK
diagram. For galaxies at z > 2.5, we adopted the analogous RJL
diagram (using IRAC 3.6 µm as L band), which extends the for-
mer to the 2.5 < z < 4 redshift regime (Daddi et al. 2004), and
checked stellar masses below 2 × 1010 M⊙. Approximately 91%
of the sources indeed lie in the high redshift regions of these
diagrams, making us confident of their photometric redshift esti-
mate. As an additional check, we carefully inspected the individ-

Fig. 7. Best-fit M∗ and α model parameters obtained by adopting BC03
(upper panel) and CB07 (lower panel) templates at different redshifts.
The symbol size increases with redshift. The shaded areas show the
values of the faint-end slope at different fixed M∗ in the redshift bins
indicated by the labels.

ual photometric-redshift probability distribution curves for each
source with z > 1.8 and M∗ < 2 × 1010 M⊙. Following the crite-
rion described in Sect. 2, we found that 96.5% of these sources
have a 90% probability of lying at z > 1.5.

As already pointed out in Sect. 3.2, the small sky area sam-
pled by our data may be responsible for degeneracies between
the faint-end slope α and the characteristic mass M∗ when fit-
ting a Schechter function. We therefore studied in detail the de-
generacies in the α − M∗ plane. The results are shown in Figs. 6
and 7. In the first figure, we analysed the redshift intervals where
both parameters were allowed to vary, while in the second one
we studied the dependence of the best-fit α on the chosen M∗ in
those redshift bins where we were forced to fix the characteristic
mass to constrain the maximum-likelihood analysis.

In Fig. 6, we show the 1σ and 2σ contours for α and
M∗ Schechter parameters, for both the BC03-based GSMFs
(black solid curves) and CB07-based ones (red dotted curves).
While the parameter α is well-constrained at all redshifts (al-
though with uncertainties increasing with z), our data prevent
us from properly inferring the value of the characteristic mass.
Nonetheless, as we show below, the result on α is robust against
the degeneracy of M∗.

The steepening in α between z ∼ 0.8 and z ∼ 3 is clear
from Fig. 6 when the BC03 stellar library is used. When we
instead adopted CB07 templates, the faint-end slope did not
change much from z ∼ 0.8 to z ∼ 2.2, while at higher redshifts
(2.5 < z < 3.5) we were forced to fix the value of M∗ to constrain
the fit (see Sect. 3.4), making the best-fit α parameter dependent
on the choice of the characteristic mass.
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Table 3. Best-fit parameters of the double power-law shape fit to 1/Vmax points from this work (using BC03 templates) + a collection from the
literature at M∗ >∼ 3 × 1010 M⊙ (see text).

Double power-law parameters (fit to 1/Vmax points) – BC03 templates
Redshift bin α β log10 M∗(M⊙) log10φ∗(Mpc−3) log ρ(M⊙ Mpc−3)
0.6–1.0 –1.36 ± 0.02 –4.47 ± 0.12 11.39 ± 0.01 –2.75 +0.02

−0.02 8.50
1.0–1.4 –1.52 ± 0.02 –5.24 ± 0.16 11.38 ± 0.01 –3.10 +0.02

−0.02 8.24
1.4–1.8 –1.49 ± 0.05 –4.70 ± 0.23 11.30 ± 0.03 –3.12 +0.05

−0.06 8.12
1.8–2.5 –2.01 ± 0.04 –6.25 ± 1.57 11.64 ± 0.06 –3.94 +0.09

−0.12 8.28
2.5–3.5 –2.28 ± 0.08 –6.70 ± 4.84 11.77 ± 0.10 –4.73 +0.17

−0.28 8.24
3.5–4.5 –2.27 ± 0.25 –6.38 ± 7.48 11.81 ± 0.19 –4.84 +0.34

−4.84 8.15

Notes. The last column reports the corresponding mass density ρ obtained by integrating the GSMF between 108 and 1013 M⊙.

To study how the best-fit value of α changes when varying
the M∗ value, we built a grid of log(M∗[M⊙]) ranging from 10.5
to 11.6 (these limits are justified by previous works) with steps
in mass of 0.1 and we fitted a Schechter function to the data for
each element of the grid. We adopted this procedure in all the
redshifts bins where the fit is unconstrained. We show in Fig. 7
the α − M∗ plane, where the shaded areas show the values of
the faint-end slope at different fixed M∗ in the redshift bins in-
dicated by the labels. The symbols show the best-fit values (and
their uncertainties) for α and M∗ at z < 3.5 (z < 2.5 when using
CB07 templates), where our results are insignificantly affected
by the lack of high quality statistics and we could allow both
parameters to vary. The upper panel refers to the BC03-based
GSMFs, while the lower one is obtained by adopting CB07 stel-
lar templates.

From Fig. 7 (lower panel, blue shaded region), it appears
that, whatever reasonable value for M∗ is chosen at 2.5 < z <
3.5, the best-fit α is clearly steeper than the best-fit values at
lower redshifts, confirming the result found with BC03 tem-
plates and supporting that the major result of this paper is unaf-
fected by the poor sampling of the high mass regime. However,
as shown by the red shaded regions in Fig. 7, presently available
data do not allow us to draw any firm conclusion about the trend
of α between z ∼ 3 and z ∼ 4.

To corroborate our result for the slope of the low-mass end,
and ensure that is unaffected by the lack of statistics at the mas-
sive end, we took advantage of the outcomes of large surveys
and followed different approaches. We fitted the 1/Vmax points
from this study together with those collected from the literature
in comparable redshift intervals. We note that in principle, and
in contrast to the STY approach, fitting 1/Vmax points involves
data binning, thus may in general produce a different fit. We in-
cluded only those surveys whose results are obtained using a
method similar to our own and that sample the high-mass tail of
the distribution, typically above M∗ ≃ 3×1010 M⊙. However, we
obtained very similar results when also including the points from
the literature at lower masses. We found that a single Schechter
function does not seem to reproduce the faint- and the bright-
end simultaneously in a satisfactory way. This is unsurprising
because the Schechter function is itself a poor description of the
shape of the GSMF when samples with high quality statistics
are used (see discussion in the introduction and in Sect. 3.2).
However, the inhomogeneity of the data set can also play a role:
we collected 1/Vmax points from different surveys, observed in
different sky areas, and computed with slightly different meth-
ods. We then fitted the ensemble of the 1/Vmax points from
this work plus those collected from the literature with a double
power-law3. The best-fit parameters are shown in Table 3. This

3 The assumed functional shape is φ∗/[(M/M∗)−(1+α) + (M/M∗)−(1+β)].

Fig. 8. Faint-end slope as a function of redshift. The parameter α was
computed through a maximum-likelihood analysis with a Schechter
form (black solid circles refer to the BC03 library, red open boxes re-
fer to the CB07 one) and by fitting the ensemble (this study + previous
surveys) of 1/Vmax points with a Schechter parametric form (blue open
triangles) and a double power-law shape (see text, green open circles).
The different sets are shifted in redshift with respect to the central values
in each interval (shown by the solid black circles).

analytic shape, having one additional degree of freedom than a
single Schechter function, provides a tighter fit to the data at all
redshifts.

We report the different values of the faint-end slope as a func-
tion of redshift in Fig. 8. It is shown that, regardless of the stellar
templates and method adopted and the functional shape fitted to
the data, all the results indicate a steepening of the faint-end of
the GSMF with redshift up to z ∼ 3. The trend is robust despite
the relatively large error bars, especially at high redshift, and the
presence of known overdensities at z ∼ 1.6 and z ∼ 2.2–2.3,
and it is unaffected by the lack of high quality statistics at the
high-mass end typical of small sky areas. The steepening of the
faint-end slope with redshift seems to halt at z > 3 and the value
of α seems to remain constant up to z ∼ 4. However, although
this is confirmed by the use of the outcome of previous large sur-
veys, the results based on our data alone are largely dependent
on the choice of the fixed M∗ parameter.

The tendency for the low-mass end of the GSMF to steepen
with redshift was previously found by other authors. According
to the evolutionary STY fit of Fontana et al. (2006), α ranges
from −1.25± 0.03 at z ∼ 0.8 to −1.51± 0.13 at z ∼ 4. Increasing
with redshift but flatter values for the faint-end slope were ob-
tained by Marchesini et al. (2009), who reported α = −0.99
at z ∼ 1.6 and α = −1.39 at z ∼ 3.5. Kajisawa et al. (2009)
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Fig. 9. SMD between 108 and 1013 M⊙ versus redshift. The solid black
and red curves are the integral of the STY Schechter fits using BC03
and CB07 templates, respectively. The grey shaded area shows the dis-
persion obtained when integrating the fit, with both a Schechter and a
double power-law functional shape, of our 1/Vmax points together with
those from the literature (see text and Fig. 8). Coloured symbols repre-
sent a compilation of results from the literature as listed in the legend
(see text for their integration limits). All the points are scaled to the
same cosmology and IMF. All the results are based on BC03 stellar
templates, except the Caputi et al. (2011) work, which adopts the CB07
library. As far as Marchesini et al. (2010) results are concerned, the cen-
tral redshift was shifted by 0.02 for visualization purposes; given their
Table 6, the central values is reported and the error bar indicates the
total scatter in their estimates. The blue dashed and green long-dashed
lines show the integrated star formation history according to the best-fit
relation from Hopkins & Beacom (2006) and Reddy & Steidel (2009),
respectively.

found α = −1.26+0.03
−0.03 at z ∼ 0.75 and α = −1.75+0.15

−0.13 at
z ∼ 3. Very steep GSMFs, in agreement with those inferred
with our data, were fitted by Caputi et al. (2011), who measured
α = −2.07+0.08

−0.07 at z ∼ 3.9. Finally, Mortlock et al. (2011) re-
ported α = −1.36 ± 0.05 at z ∼ 1.25 and α = −1.89 ± 0.11 at
z ∼ 2.75. Both Mortlock et al. (2011) and Caputi et al. (2011)
found a flattening at higher redshift similar to the one that we
measure at z ∼ 4, i.e. they fitted α = −1.73 ± 0.09 at z ∼ 3.25
and α = −1.85+0.27

−0.32 at z ∼ 4.6, respectively.
We note that equally robust results cannot be inferred for the

evolution of the characteristic mass M∗, whose best-fit values
are highly sensitive to the stellar templates and the functional
shape fitted to the data (see Tables 1–3), as well as the size of
the sample.

5. The stellar mass density (SMD)

We computed the total SMD by integrating the analytical fitting
functions in each redshift bin from 108 to 1013 M⊙. We show
in Fig. 9 the SMD derived from the STY analysis using BC03
and CB07 templates as solid black and red curves, respectively.
We also show a compilation of results from the literature, re-
ported to the same cosmology and IMF, as listed in the legend.
The same integration limits as in this study were used in most

of the works considered. The only exceptions are the Mortlock
et al. (2011) points (M∗ > 107 M⊙), the Ilbert et al. (2010) ones
(M∗ > 105 M⊙), and those from Dickinson et al. (2003) and
Pérez-González et al. (2008), who adopted redshift-dependent
mass limits (we refer to these works for more details). Our re-
sults show good agreement with those computed by previous au-
thors at 0.6 <∼ z <∼ 2, although we recall once again that our mass
densities in the redshift intervals around z ∼ 1.6 and z ∼ 2.2–2.3
might be systematically too high owing to a few known overden-
sities. The steepness in the faint-end of the GSMF computed by
this work is responsible for the large values of the SMD inferred
at z > 2. Our estimates are higher than those reported by previ-
ous authors, with the exception of the Mortlock et al. (2011) re-
sults. However, the latter results originate from a different shape
of the GSMF: Mortlock et al. (2011) indeed found flatter faint-
end slopes than we do, and the large SMD is a consequence of a
higher density of high mass galaxies (see Fig. 3).

We note that the SMD is affected by uncertainties caused by
systematic effects. In Fig. 9, the grey shaded region indicates
the dispersion in the SMD when including the outputs obtained
by integrating the fit to our 1/Vmax points plus those collected
from the literature with both a Schechter function and a double
power-law shape (see Sect. 4). This region represents the sys-
tematic errors caused by the choice of the stellar library and the
functional shape of the GSMF, as well as the simultaneous use
of the ERS observations as a probe of the low-mass end of the
GSMF and the results of large surveys to constrain the bright-
end. The dispersion increases significantly at z ! 3, reflecting
the large scatter among existing surveys. Moreover, the lack of
overlap with most previous results at these redshifts is a sign
of the impossibility to assemble a single, self-consistent GSMF
from the highest to the lowest masses. This is due to the inhomo-
geneity of the samples, to the variance between different fields
and also to the intrinsic uncertainties at high redshift in both the
stellar masses and GSMF.

We compared the SMD with the integrated SFRD. For this
purpose, we first considered the best-fit to the compilation
of SFRD measurements made by Hopkins & Beacom (2006).
Following Wilkins et al. (2008), we rescaled it to a Salpeter IMF
and integrated it as a function of time, after accounting for the
gas recycle fraction. The latter is the fraction of stellar mass re-
turned to the interstellar medium as a function of time, and was
computed using the Bruzual & Charlot (2003) model. The result
of this calculation is shown in Fig. 9 by the blue dashed line. We
then performed the same calculation by using the best-fit para-
metric shape for the star formation history inferred by Reddy
& Steidel (2009), which also includes more recent high redshift
points as well as a luminosity-dependent dust correction to the
z > 2 data. We obtained the green long dashed line shown in
Fig. 9.

Our results solve the discrepancy between the SMD and the
integrated SFRD at z > 2 (modulo the uncertainties affecting
the z ∼ 2.1 redshift interval), especially when considering the
dispersion caused by the inclusion of high mass 1/Vmax points
from the other surveys. Consistency at high redshift was found
by Mortlock et al. (2011) and Papovich et al. (2011), the latter
study being based on an independents analysis. Overall, our re-
sults support the notion that the SMD can be reasonably close
to the integrated SFRD at z > 2, mostly due to a steepening
of the GSMF, although our results might be systematically too
high because of the known overdensities in the small ERS field.
As mentioned, the higher values that we obtained than most pre-
vious studies is essentially due to the efficiency of WFC3 deep
near-IR data to accurately recover the faint-end of the GSMF,
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especially at high redshift, which contributes significantly to the
total SMD. However, the significant steepening in the faint-end
slope presented in this work is insufficient to solve the disagree-
ment at z < 2, where the integrated SFRD exceeds the observed
SMD by a factor of ∼2−3, even when both of them are integrated
down to low values of stellar mass/luminosity and adopting the
SFRD computed by Reddy & Steidel (2009). Their SFRD, al-
though it is lower than that resulting from the best-fit relation
of Hopkins & Beacom (2006) at z < 2.5, is still unable to rec-
oncile the two observables. The discrepancy is also not solved
when our deep data, which allow a good control of the faint-end
slope, are matched to the large surveys results to constrain the
bright tail of the GSMF, and it gets even worse if one assumes
that our mass density results are systematically too high owing
to overdensities in the ERS field.

6. Comparison with theoretical models

In Fig. 10, we compare our results with the predictions of semi-
analytical models of galaxy formation and evolution, which fol-
low the evolution of the baryonic component adopting an ap-
proximate description of the relevant physical processes (i.e.
gas cooling, star formation, stellar feedback, black hole growth,
and AGN feedback) and of their interplay with gravitational
processes, linked to the assembly of the large-scale structure
of the Universe. These “recipes” include a number of parame-
ters that are usually fixed by comparing model predictions with
a set of low-redshift observations. Despite their simplified ap-
proach, semi-analytical models have turned into a flexible and
widely used tool to explore a broad range of specific physical
assumptions, as well as the interplay between different phys-
ical processes. We considered different, independently devel-
oped semi-analytical models: Menci et al. (2006) (red dotted
curves) updated to include the Reed et al. (2007) halo mass func-
tion, MORGANA (Monaco et al. 2007, as updated in Lo Faro
et al. 2009, blue long-dashed curves), Wang et al. (2008) (green
dashed curves), and Somerville et al. (2011) (orange dot-dashed
curves). We refer to the original papers for a detailed descrip-
tion of the recipes adopted in the galaxy formation and evolution
modelling. All three models of Wang et al. (2008), Somerville
et al. (2011), and MORGANA resolve galaxies with M∗ >
109 M⊙, while the Menci et al. (2006) model has a lower mass
limit of 108 M⊙. The predicted stellar masses were convolved
with a Gaussian error distribution on logM∗ (see Fig. 2) to re-
produce the observational uncertainties. We refer the reader to
Fontanot et al. (2009) and Marchesini et al. (2009) for a detailed
analysis of the effects of convolving the model predictions with
observational errors. All stellar masses were converted to those
for a Salpeter IMF.

We first compared the GSMFs derived for various redshifts
in the upper panel of Fig. 10; we plotted only four redshift bins,
the other two having very similar behaviours to the 1.0–1.4 in-
terval. We considered both the BC03- and the CB07-based ob-
served GSMFs. Despite the different physical recipes adopted
by the different semi-analytical models, their predictions are re-
markably similar (as already found by Fontanot et al. 2009). All
the models considered consistently predict a larger abundance
of low mass galaxies than observations at least up to z ∼ 3, de-
spite the steep low-mass end slope inferred from our data. The
only exception is for the model of Wang et al. (2008), which is
closer than all other models to the observations at z ∼ 2.2 and
consistent with them at z ∼ 3. The general overestimation of
the faint-end is often attributed to a too efficient formation of
low-to-intermediate mass (109−1011 M⊙) galaxies in the mod-

BC03

CB07

Fig. 10. Observed GSMFs in different redshift ranges (upper) and ob-
served SMD between 109 and 1013 M⊙ (lower) compared with theoret-
ical predictions, shown as coloured curves. Red dotted curves: Menci
et al. (2006). Blue long-dashed curves: MORGANA (Monaco et al.
2007). Green dashed curves: Wang et al. (2008). Orange dot-dashed
curves: Somerville et al. (2011). Black solid circles, solid lines, red
open boxes, and the grey shaded area show the results of the present
work as in Figs. 5 and 9.

els (Fontanot et al. 2009; see also Lo Faro et al. 2009) and it
cannot be explained by systematic uncertainties caused by the
stellar templates. On the observational side, it is unlikely that
so many low mass galaxies have been missed by observational
surveys, especially at low redshift (z ∼ 1), when the disagree-
ment is evident for M∗ > 1010 M⊙. In our highest redshift bin
(3.5 < z < 4.5), the models of Wang et al. (2008), Somerville
et al. (2011) and MORGANA show a reasonable agreement with
the data, while the Menci et al. (2006) model still slightly over-
predicts the space density of low mass galaxies. This is because
the model of Menci et al. (2006) includes starburst events trig-
gered by fly-by interactions, which are very common in low
mass objects at high redshift and increase their stellar mass.
All theoretical predictions also underestimate the stellar mass
of high mass galaxies in the highest redshift bin. However, this
mass range is highly affected by cosmic variance, and the small
(≤3) number of galaxies observed with our data in each of the
highest mass bins (M > 1011 M⊙) prevents us from drawing any
firm conclusions. We note that Marchesini et al. (2009) found a
similar disagreement at high masses, using observations on a sky
area ∼10 times larger than the area sampled by this study.
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A different treatment for the TP-AGB phase in the stellar
population synthesis models (i.e. moving from BC03 to CB07)
may indeed help in reducing the high-mass end discrepancy, by
reducing the inferred stellar masses of the galaxies in the sam-
ple. Henriques et al. (2011) indeed demonstrated that the inclu-
sion of a more detailed treatment of the TP-AGB phase in the
semi-analytical framework solves a comparable mismatch be-
tween the predicted and observed rest-frame K band luminosity
function of bright galaxies at z ∼ 2−3, by increasing the pre-
dicted K-band flux in model galaxies. This effect is particularly
relevant at these cosmic ages, since model galaxies are domi-
nated by intermediate-age stellar populations, with the right age
(∼1 Gyr) to develop a TP-AGB phase, which makes them redder
without the need to change their mass or age. We test this idea by
considering stellar masses estimated using the CB07 synthetic
templates. However, as clearly shown in Fig. 10 (upper panel,
red open boxes), assuming stellar templates that account for TP-
AGB stars alleviates (the number of M > 1011 M⊙ galaxies in
the sample is reduced by 37%) but does not completely solve
the mismatch at the high-mass-end of the GSMF in the highest
redshift bin (where the previous percentage reduces to 12.5%).

We also compared the various SMDs for galaxies of mass
109 < M∗/M⊙ < 1013, as predicted by the four models we con-
sider (lower panel of Fig. 10), and we found that it is on aver-
age higher than that observed by a factor of ∼2 up to z ∼ 2.
The models of Wang et al. (2008), Somerville et al. (2011), and
MORGANA show good agreement with our results at 2 " z " 3,
and are below the data at the highest redshifts. The predic-
tions of Menci et al. (2006), given its overall steeper low-mass
end, are instead higher than the observed SMD up to z ∼ 3.
These results are driven by the afore mentioned overabundance
of intermediate-to-low-mass galaxies, which dominate the SMD
at all redshifts, and are counterbalanced by the underestimation
of the stellar mass in massive galaxies at high redshift.

7. Summary

We have used deep near-IR observations (Y as faint as 27.3, both
J and H as faint as 27.4 AB mag at 5σ) carried out with the
Wide Field Camera 3 in the GOODS-S field as part of the ERS.
These data, complemented with a deep KS (as faint as 25.5 at
5σ) Hawk-I band data set and high quality photometry in vari-
ous bands from the near-UV to 8 µm, have been used to derive
accurate estimates of the stellar mass. We have succeeded in re-
ducing the average relative error in the stellar mass for a given
object by ∼30% with respect to that obtained with the GOODS-
MUSIC catalogue in previous works from our group.

Unfortunately, the sky region covered by ERS observations
is biased by a number of localized as well as diffuse overden-
sities (Vanzella et al. 2005; Castellano et al. 2007; Salimbeni
et al. 2009a; Yang et al. 2010; Magliocchetti et al. 2011), which
could be responsible for the oscillations in the normalization of
the GSMF given the limited size of the area. However, this data
set offers a unique combination of accuracy in photometric qual-
ity (hence in photometric redshifts and stellar mass) and depth,
which makes it ideally suited to studying the faint-end of the
GSMF.

We computed the GSMFs in six different redshift intervals
between 0.6 and 4.5. Thanks to the depth of the catalogue, we
were able to study the low-mass end of the GSMF at lower
masses than most previous studies by 0.5 dex up to z ∼ 1.8
and 0.1 dex at z ∼ 4. We compared our results with previous
works and found general good agreement, even at the highest
masses, despite the limited sky area sampled by our data set. We

found that the only redshift intervals that show poorer agreement
with previous results are those between z = 1.4 and z = 2.5,
which are known to be affected by the presence of overdensi-
ties: we discovered, as expected, a slightly larger abundance of
massive galaxies. We also compared our results for the GSMF
obtained with two different stellar libraries, BC03 templates and
CB07 ones, the latter including a treatment of TP-AGB stars.
The stellar masses inferred from the CB07 library are on av-
erage 0.12 dex lower than the BC03-based ones, with a large
(0.17 dex) scatter. The lack of a clear trend with stellar mass or
redshift of the ratio of the two estimates translates into a lack of
systematic difference between the best-fit Schechter parameters
in the two cases. The largest disagreement was found at z ∼ 2−3,
where the effect of the TP-AGB phase is expected to be the most
important.

The main result of this study is the steepening of the faint-
end slope: the value of α increases from −1.44 ± 0.03 at z ∼ 0.8
to −1.86 ± 0.16 at z ∼ 3, and then flattens up to z ∼ 4. We have
confirmed the steepening of the low-mass end, which had been
pointed out by previous authors, with deeper and higher quality
photometry. Our results are unaffected by degeneracies in the
M∗ parameter, and they are insensitive to the choice of either
the stellar templates or the functional shape fitted to the GSMF,
as well as to the limitations of the small area covered by ERS
observations.

We computed the SMD as a function of redshift and com-
pared it with the integrated star formation histories derived by
Hopkins & Beacom (2006) and Reddy & Steidel (2009). The
finer sampling of the GSMF at low masses and the steep in-
ferred faint-end slopes determine the higher SMD estimates at
z > 2 than most previous works, solving the disagreement ob-
served by previous authors between the SMD and the integrated
SFRD at these redshifts. However, despite the steep GSMF that
we find, the integrated star formation history still exceeds the
direct measure of the SMD at z ∼ 2 by a factor of ∼2−3, even
when our data are analysed together with the results of previous
large surveys to ensure a good sampling of also the bright-end
tail of the GSMF.

Finally, we compared our GSMF and SMD estimates with
the predictions of four models of galaxy formation and evolu-
tion. All models predict a larger abundance of low mass galaxies
than observations, at least up to z ∼ 3. They also underestimate
the stellar mass of high mass galaxies in the highest redshift
bin, although cosmic variance effects prevent us from drawing
firm conclusions at these redshifts. The overabundance of low
mass galaxies translates into a general overestimation of the to-
tal SMD with respect to the data up to z ∼ 2, while this density is
underestimated at z >∼ 3 owing to the dearth of massive galaxies
at these redshifts. The exact degree of disagreement depends on
the particular model.

Future CANDELS data will cover a larger sky area and al-
low a finer sampling of both the bright-end of the GSMF and its
normalization, and at the same time they will be deep enough to
accurately probe the GSMF faint-end. These, together with spec-
troscopic follow-up campaigns, will reduce the uncertainties in
the stellar masses, and they will significantly improve our results
and our understanding of the stellar mass assembly process.
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